a2 United States Patent

Garrity et al.

US009251548B1

US 9,251,548 B1
*Feb. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(63)

(1)

(52)

(58)

OBJECT TRANSFORMATION FOR OBJECT
TREES UTILIZED WITH MULTIPROCESSOR

SYSTEMS

Applicant: The MathWorks, Inc., Natick, MA
(US)

Inventors: Michael P. Garrity, Lexington, MA
(US); Mario S. Guimaraes, Bellevue,
WA (US)

Assignee: The MathWorks, Inc., Natick, MA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 226 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/897,965

Filed: May 20, 2013

Related U.S. Application Data

Continuation-in-part of application No. 13/617,562,
filed on Sep. 14, 2012, now Pat. No. 8,446,425, which
is a continuation of application No. 12/059,319, filed
on Mar. 31, 2008, now Pat. No. 8,300,060.

Int. Cl1.

GO6T 17/00 (2006.01)

G09G 5/02 (2006.01)

G09G 5/00 (2006.01)

GO6T 1/00 (2006.01)

U.S. CL

CPC .o GO6T 1/00 (2013.01)

Field of Classification Search

CPC . GO6T 11/206; GO6T 15/005; GO6T 2210/52;

GO6T 2210/61;

GO09G 5/363

See application file for complete search history.

1500

:DATA!

(56) References Cited
U.S. PATENT DOCUMENTS
6,734,853 B2 5/2004 Heim et al.
7,050,955 Bl 5/2006 Carmel et al.
7,184,038 B2 2/2007 Sowizral et al.
7,386,792 B1* 6/2008 Bascometal. 715/205
8,300,060 B1 10/2012 Garrity et al.
2005/0140694 Al 6/2005 Subramanian et al.
2006/0106591 Al 5/2006 Bordes et al.
2009/0024683 Al 1/2009 Beckman et al.
OTHER PUBLICATIONS

Henry Sowizral et al., “The Java 3D API Specification, Second Edi-
tion”, Jun. 2000, Addison-Wesley, pp. 160, 161, 389, 390, 408 and
409.

Co-pending patent U.S. Appl. No. 13/617,562, titled “Object Trans-
formation for Object Trees Utilized with Multiprocessor Systems”,
filed Sep. 14, 2012, 104 pages.

* cited by examiner

Primary Examiner — Kee M Tung
Assistant Examiner — Sing-Wai Wu
(74) Attorney, Agent, or Firm — Harrity & Harrity, LLP

(57) ABSTRACT

A system may include a memory that stores instructions and
a processor to execute the instructions to store a first set of
objects in a first data structure, where the first set of objects
describe a graphical scene. The processor may create a group
of commands and add a command for at least one object, of
the first set of objects, to the group of commands. The pro-
cessor may combine the group of commands into a composite
command, where the group of commands includes the added
command. The processor may create a second set of objects in
a second data structure based on the first set of objects in the
first data structure and the composite command. The proces-
sor may also modify the second set of objects and provide the
modified second set of objects to a browser for rendering the
graphical scene.

20 Claims, 48 Drawing Sheets

<LIPDATE VISITOR

NN

MAPPING=F

PACE

2
1%
[S]

5
1360

e] oo] e] Toe]]

Z
1370 1380 1390

:COMPOSITE COMMAND

| s1510

- :CREATENCDECOMMAND

(INSERTCHILDCOMMAND
:CREATENCDECOMMAND

weew-] INSERTCHILDCOMMAND

¥ :CREATENODECOMMAND

:INSERTCHILDCOMMAND
- :CREATENODECOMMAND

--=-p [INSERTCHILDCOMMAND
- :CREATENODECOMMAND

:INSERTCHILDCOMMAND

:CREATENODECOMMAND
-t :INSERTCHILDCOMMAND

:CREATENODECOMMAND

INSERTCHILDCOMMAND
:CREATENODECOMMAND

:INSERTCHILDCOMMAND
‘CREATENODECOMMAND

INSERTCHILDCOMMAND
EATENCDECOMMAND
he INSERTCHILDCOMMAND

U.S. Patent Feb. 2, 2016 Sheet 1 of 48 US 9,251,548 B1

USER INPUT

!

PROCESSING
ALGORITHM
105

PEER OBJECT
TREE

OBJECT TREE
100

115
l,,

-

SPECIALIZED
PROCESSOR PROCESSING UNIT
125 130

FIG. 1A

U.S. Patent

USER INPUT

'

Feb. 2, 2016

GRAPHICS
PROCESSING
ALGORITHM
105

OBJECT TREE
100

(/2/1'1'5_ T
Jre

,’/ 11 X\X\Q\%\
/\

N
AY

1154
\

s L,"x

115

L 115 /\115
A

e BN

Sheet 2 of 48

US 9,251,548 B1

GRAPHICS RENDERING
TREE

PROCESSOR
125

FIG. 1B

US 9,251,548 B1

Sheet 3 of 48

Feb. 2, 2016

U.S. Patent

2-S22 L-Gce ¢-022 1-0ZZ
- - - -
123rdao 123rdo 103rgao 123rgo
dlHo a’iiHO aliHoO aiiHo
JOVdSHOT10D JOVdSHOT10D
/A0VdSVYLvd /AVVASVY1vd
Z =
gz 0l¢
103rgao
INIHVYd
g0c
00¢
J941 123rdo

US 9,251,548 B1

Sheet 4 of 48

Feb. 2, 2016

U.S. Patent

2-552 1-652 2-052 1-062
4 4 4 S
103rg0 103rg0 103rg0 103rg0
aTiHO a1HD aTIHD aTiHD
103rg0 ¥3ad 103rg0 ¥33d L
09z
5 ﬁwm NOILYINHOASNYYL
SpT -
193r€0
INTYVd
S .
ez 3 z-s2T 1-Sez 2022 b-0ce
\;\\\\ w $ w $
0€e \C\ . 103rdo 103rg0 1203rgo0
3341 592 TIHD aTIHD aiiHo
ONINIANTY NOILYINHOASNYHL :
SOIHAVHD 4/\ S~
3OVdSHOT0D 3OVdSHOTOD
/30VdSY.Lva /30VdSY1va

mmm /\ om

103rao
\(\ IN3Hvd
00¢ $
3341 103rdo s0¢

US 9,251,548 B1

Sheet 5 of 48

Feb. 2, 2016

U.S. Patent

0ce
HINHFS

¢ 9Old

0ge
(S)IMHOMLIAN

-Gle
\\ yasmoxs (T

INTMD
N-0LE
L-gLe
/ yasmousd [T~
INTTO
L-0Le
~— oo¢

US 9,251,548 B1

Sheet 6 of 48

Feb. 2, 2016

U.S. Patent

ocl
1INN
ONISS300dd
da3zinvio3ads

oLy
sng /4 H

¥ "Old

Gcl

d0S85300dd

(0)A4

JOV4H3LNI
NOILVYOINNAWOD

)47

40IA3d
JOVHOLS

oey

NOY

0cy

AJOWEN

NIVIA

09y

ADIA3A LNd1NO

oSy

30IA3A LNdNI

~— ooy

US 9,251,548 B1

Sheet 7 of 48

Feb. 2, 2016

U.S. Patent

G 'Old

N-0€S
N AdVdHdl

L-0€G
v Advddl

0cg
Ino

0Ls
ININNOHIANT ONILNdNOD TVOINHOIL

G

00v

U.S. Patent Feb. 2, 2016 Sheet 8 of 48 US 9,251,548 B1

START

600 \/‘[RECEIVE USER INPUT REGARDING A GRAPHICAL SCENE]

l

61 \/\[CREATE OBJECT TREE, USING LIBRARY A, BASED ON THE]

USER INPUT TO DESCRIBE THE GRAPHICAL SCENE

l

CONTEMPORANEOUSLY WITH CREATION OF OBJECT
TREE, CREATE GRAPHICS RENDERING TREE, USING
LIBRARY N, BASED ON THE OBJECT TREE

'

CONTEMPORANEOUSLY WITH CREATION OF OBJECT
TREE, CONVERT SELECTED OBJECT TREE COORDINATES,
630 —~ COLORS AND/OR DATA TYPES/FORMATS TO DIFFERENT
COORDINATE SYSTEM(S), DIFFERENT COLOR SPACE(S)

AND/OR DIFFERENT DATA TYPE(S)/FORMAT(S) FOR

ASSOCIATION WITH THE GRAPHICS RENDERING TREE

620

END

FIG. 6

US 9,251,548 B1

Sheet 9 of 48

Feb. 2, 2016

U.S. Patent

L '9Old

2] ejeq ppv A
b suoljelouuy
G0
0 ¢AH
¢AH
S0 | 1A HH
x HH
2 em HH
O 0 M E
O 9 1% 4 - IMHEH
— 0O sajqelen
soxy @A G0
O ' 0 soxy g
. M \ G0 soxy gz |
soxy [] | Sioldans meN @_
X Jesmaig 10ld X 9}j9jled mg:c_n_.
& x o=BIE : . el
dieH mopulpp dopise@ Bngs@ sjool Hesu] MIIA NPT 94
XEE ™\ _ ooz

Ino

US 9,251,548 B1

Sheet 10 of 48

Feb. 2, 2016

U.S. Patent

2-55¢ 1-652Z 2-052 1-062
4 4 4 S
103rgo 1923rg0 193rgo 103rg0
dTiHO aTiHO aTIHO aiHo
123rgo ¥33ad 103rgo ¥33d
5 G
YT 0¥z
193rgo
LINTHVd
4 . i}
Gez 2-92¢ 1-92z 2-022 L-02¢
S S S -
0€Z \/\ 103rgo 193rgo 123rg0 123rg0
IHL aiHo aiHO aTiHO aiiHO
ONIYIANTY ~_
SOIHAVYD S~
JOVdSHOT0D 30VdSHOTOD
/A0VdSYLVd /A0VdSY.LYd
L ﬁ /\ ﬁ
clLz oLz
103rgo
\/\ INTYVd
002 5
3341 153090 s0c

US 9,251,548 B1

Sheet 11 of 48

Feb. 2, 2016

U.S. Patent

¢-02¢
4

V6 9Old

1-022
4

103rdo
dTmHO

103rgao
aiHo

[¢ 2 ll=vlva
ZEINI=adAL
INEENZ

0lLg I

A0VdSVY.Lvd

00¢
EEIRE
103rg0o

viva A

A S

0¢6

[¢z 1ll=vLlva
ZSINI=adAL
INEEA

S

v1ivaXx

S
0lL6

ﬁ...»m.N—\ »N.NF TR

‘1°ZL ‘02l = v1va

379N0d=3dAL
AVEav:

VivaZz

Z
006

US 9,251,548 B1

Sheet 12 of 48

Feb. 2, 2016

U.S. Patent

0v6 0€6 .
2 S g6 9Old
[*"260°L £80°L 980°L 6.0°L [0LZ'L ZOL'L €80°L 640°1
Yzl 2L A A
22 1] vy gz Ll
=V1ivd =Vv1lvd
JTONIS=TdAL ATONIS=3dAL
IN A AVHEY:
X Y 1 |
LT S E——
||||||||||| -\':.-:' " [y \\-\- ..— :n:a:.
J/ _-———— Y
- ” o Ve [L -
.wmmm , L m.mm / ..wm MNN .." L MNN.,,, ot viva
’ ¥ C1NI=3dAL
123rgao 123rdo 103rdo 123rgo Y
aTiHO d1iHO dliHo alHo z
V1va A 026
: [‘L1 =v1lva
; ; CINI=3dAL
Y0P WY 103rdo ¥33ad L 0LlZVY 30Vdsylva / V-
\ . ; i . iA S
m v.va X 0L8
..—/,..p \\.\ ./,./u \\\.\ —H . W _\ .NN —\ Eauns
R e e - ‘1’21 '0¢Ll = vlva
................... 319N0A=3dAL
AVIEY:
0€e 002 z
3341 103rg0 vivaz 006

J3HL ONIEYSAN3H
SOIHAVYEDO

US 9,251,548 B1

Sheet 13 of 48

Feb. 2, 2016

U.S. Patent

010}
S

d WF1SAS
JLVYNIGH400D
NI SFLVYNIGHO0D

7 NOILYINHOASNYY.
5 VNIQuo0D

193rg0
L-052N alHo
m_
193r€0
IO IEER:
0ez

J341 ONIMIANTS

SOIHAVHO

0L "©Old

000}
s

V WNILSAS
JLYNIJH00D
NI S3LYNIGH400D

! anHo

aaaaaaa
- -
- -
\\\\\
~

193rdo

%, 0lZVY 3oVdSY.Lvda:

00¢
3341

1904rgao

-~ ae”

Y

US 9,251,548 B1

Sheet 14 of 48

Feb. 2, 2016

U.S. Patent

oLLL
5
g 30VdS
HO109 NI SH010D
4
103rdo
058N Tamo
193r€0
,....oqms d3ad:
€z
3341 ONINIANTY
SOIHAVYD

 CE—

L1 "Old

NOILVINHO4SNVY

40700

00LL
¢
Y 30VdS
¥OT10D NI SHO109
4
............
S1022A | |argo aiHO
" 012 VY FOVdSHOT00:
002
cENT]
123790

TS e s

U.S. Patent Feb. 2, 2016 Sheet 15 of 48 US 9,251,548 B1

START

120 | OBTAIN OBJECT TREE THAT DESCRIBES A GRAPHICAL

SCENE

1210«*[CREATE COMPOSITE COMMAND]

'

TRAVERSE OBJECTS OF OBJECT TREE AND ADD ONE OR
122 MORE COMMANDS TO COMPOSITE COMMAND FOR EACH
OBJECT IN TREE

l

DURING OBJECT TREE TRAVERSAL, CONVERT SELECTED
OBJECT TREE COORDINATES, COLORS AND/OR DATA
1230—- TYPES/FORMATS TO DIFFERENT COORDINATE SYSTEM(S),
DIFFERENT COLOR SPACE(S) AND/OR DIFFERENT DATA
TYPE(S)/FORMAT(S)

'

1240 _A EXECUTE COMMANDS OF COMPOSITE COMMAND TO]

CREATE GRAPHICS RENDERING TREE

END

FIG. 12

US 9,251,548 B1

Sheet 16 of 48

Feb. 2, 2016

U.S. Patent

¢l Old

06€lL 08¢gl 0.LE) 09€l ogel ovel
9 2 9 9 5 9
1X3al: aNI: aNIT: avno: INIT: avno:

NS

EERIEH

ocel

<

lozseczzszicad=

TIVHO dve:

,> 0zel

SOEEWN

4=ONIddVIA

JOVdSYLVA:

<

GLrLeegzsed=
TIVHD avg:

Y T /o

b &

00¢t

U.S. Patent Feb. 2, 2016 Sheet 17 of 48 US 9,251,548 B1

FIG. 14

4.0 —

1400

U.S. Patent Feb. 2, 2016 Sheet 18 of 48
1500 1302
= ———4———L5:DATASPACE
UPDATE VISITOR MAPPING=F

US 9,251,548 B1

)!\,/ 1300

1330

s Z Z Z Z Z
1340 1350 1360 1370 1380 1390
.COMPOSITE COMMAND |5 1210

1512 weee :CREATENODECOMMAND » GrouP 1010
T r— INSERTCHILDCOMMAND S
1518 --enns "CREATENODECOMMAND » GrOUP 1922
1520 - INSERTCHILDCOMMAND j
1524 - :CREATENODECOMMAND > GEODE ‘J\ 1528
1526+ INSERTCHILDCOMMAND
1530 - ‘CREATENODECOMMAND - GEODE {4 1934
1532 === INSERTCHILDCOMMAND
1536 -+ :CREATENODECOMMAND » :GROUP 71540
1538+ INSERTCHILDCOMMAND || .. S
1542+ :CREATENODECOMMAND » GEODE E‘J\1546
1544 ----- INSERTCHILDCOMMAND
1548-#H :CREATENODECOMMAND » GEODE 1952
1550 INSERTCHILDCOMMAND q\ -
1554 ---- ‘CREATENODECOMMAND » :GROUP
1556 - INSERTCHILDCOMMAND SRR
1560 - ‘CREATENODECOMMAND |}--------- » GEODE 1564
1562 - INSERTCHILDCOMMAND || ‘oo
1566 - # CREATENODECOMMAND » GEODE /1570
1568 INSERTCHILDCOMMAND] FlG 15

US 9,251,548 B1

Sheet 19 of 48

Feb. 2, 2016

U.S. Patent

91 "Old

. 0.S) v@ﬁ Nmﬁ @% e3el 8Z5G1
NUANGY)

N —J039: 30039: 30039: 30039: 30039: 30039
. /<) ovS| 22s)
AN g\ S S

/ dNoyo: / /s_ dNOYD: dNOYD: ﬁN\

0091

U.S. Patent Feb. 2, 2016 Sheet 20 of 48 US 9,251,548 B1

START

TREE

'

SET “DIRTY” BIT ASSOCIATED WITH OBJECT(S) IN
OBJECT TREE HAVING CHANGED PROPERTY(IES)

. J

:

IF CHANGED PROPERTY(IES) ARE LIMIT
1720~ PROPERTIES, SET “DIRTY” BIT ASSOCIATED WITH
PARENT DATASPACE/COLORSPACE OBJECT

1700\/‘[CHANGE PROPERTY(IES) OF OBJECT(S) IN OBJECT]

-~

1710—

Y
PERFORM UPDATE TRAVERSAL OF OBJECT TREE TO1
CHANGE PROPERTY(IES) OF CORRESPONDING
1730——~ OBJECT(S) IN GRAPHICS RENDERING TREE AND TO
PERFORM DATASPACE/COLORSPACE
TRANSFORMATIONS

END

FIG. 17

US 9,251,548 B1

Sheet 21 of 48

Feb. 2, 2016

U.S. Patent

V8l 9Oid
0681 0881 0.8} 0981 0s8l 0v8l
9 9 9 9 D) 5
0 0 0 0 0 0
06S) 08! oLel 09€l ogel orel
& 7 4 {5 S 7 S S
1X3lL: aNI: =gk IVHIALYIHAvND: aNI: IVHILYTIHAVYNO:

NS

S~

0zEL /
S 0

\

T l9zgczzszLzad=A " 61 8€529€2=A|
IOvAD 9veE v ava: |
omwr

.\\ /\\\ Av

0 ogel olek | o
4=ONIddVI k)

5 508l VY FovasvIva: [, 018l

0e8l ,

S
—)
y

GOo8lI

00¢L

US 9,251,548 B1

Sheet 22 of 48

Feb. 2, 2016

U.S. Patent

dgl 9ld
0681 0881 0.81 0981 0581 ov8l
9 S 9 9 9 9
0 0 0 0 0 0
o6el / oger 4 0/€l oeer oser oveL
i . 4,/ &% & 7 ,
1x3aL anNI: aNIT: TIVHILYTIHAYND: aNIT: TVHILYTII™AVND:

0e8lL

EEERIESE

<

0zEL
S

5 /\ \ omm 4 4
‘ olel
AL¥IdONd f 0

oecl

LIWIT A3ONVHD

TIVHO ¥ve:

[9zse - gzLeel=

AL

4=ONIddVA

JOVASYLIVA: |,

goel

i |

G081

glrrgegesezl=
TavVHD ave:

0181

00¢l

U.S. Patent Feb. 2, 2016 Sheet 23 of 48 US 9,251,548 B1

START

1900«‘[STEP THROUGH OBJECTS OF OBJECT TREE]

:

FOR EACH DATASPACE/COLORSPACE OBJECT

1910~ WHOSE “DIRTY” BIT IS SET, DETERMINE THE

EXTENTS OF THE DATA VALUES OF THE OBJECT'S
CHILDREN

!

'S ™

IF THE EXTENTS ASSOCIATED WITH A DATASPACE/
COLORSPACE OBJECT’S CHILDREN HAVE CHANGED,

192 CHANGE DATASPACE/COLORSPACE OBJECT'S
MAPPING
193¢ EXECUTE UPDATE METHOD FOR EACH OBJECT

WHOSE “DIRTY” BIT IS SET TO INSERT APPROPRIATE
COMMAND(S) INTO A COMPOSITE COMMAND

;

TRANSFORM DATA VALUES ASSOCIATED WITH
1940——~ CHILDREN OF EACH DATASPACE/COLORSPACE
OBJECT BASED ON CHANGED MAPPING

'

195 EXECUTE COMPOSITE COMMAND TO REVISE THE
OBJECT(S) OF THE GRAPHICS RENDERING TREE

END

FIG. 19

US 9,251,548 B1

Sheet 24 of 48

Feb. 2, 2016

U.S. Patent

M? omwm: owm: on\,@w_ omww | SMF
0 0 0 0 0 0
06l osel oeL ool osel ovelL
s 7) s 7 5 7 4 s
IXAL aNIT: aNIT: TVHILYTIHAYNO: aNIT: TVHILYIIHAYNO:
//////\\\\\\\ A/////////(\\\\\\,owmr ‘/////////\\\\\\\\
A []
S [0z6¢ L-sTLzed=Al" SLL8EGcSEcl=A
A N TIVHO SV > VRO avE: [N,
s 028} 4 Y
) el oLelL 0
)
4 018l
oesl Z [1=WITA U
m HOLISIA SLNILXT L3D
soel r z
5 0002
081
00€}

US 9,251,548 B1

Sheet 25 of 48

Feb. 2, 2016

U.S. Patent

Mw? omwwr owm: ow@m: omw ovwv
0 0 0 0 0
oeel S ogel ol o9gl osel orel s
S/ 4 4§ 7 s 7 s ; 7
as aNIT: aNI: TVHI LY TI™AVND: NI TVHILYII™AYNO:
< / geet <
) |1 u
S lozge V- szized=A " [s218egzaeel=A]
y EERIgISE TIVAD Sve ® LIVHZHVE: ™,
0z8!
\.\ w /\\\\\\\ ﬁ
- . oLEl 0
H4=9ONIddVIN 5
5 JOVASYIVA |, L8l
0egl A\. R [8'€ SLLI=ITA
coel |) HOLISIA SINILX3 139
c09¢e 0002

00¢cl

US 9,251,548 B1

Sheet 26 of 48

Feb. 2, 2016

U.S. Patent

J0¢ 9Id

o@mm: omwx owm: owom: omw@ ! ovmr
0 ol 0 0 0 0
06l ogel oL oeel osel ovelL
1x3L: aNIT: aNIT: TvYILYIRHAYND: aNIT: TVYILYI™AYNO:
< < gctl <
2 []
=R l9zge L- sz1zal=AlL" GL18EGCSE L= Al
d31nd: TaVHD a9vga: ONW_‘ 14VHO dva:
.\\\ w /\ ﬁ S
5 ogel olel 0
4=ONIddVW 5
> TOVASVIVA: ™, . 0181
oest G [g¢ L=WITA v
G0l |) HOLISIA mszbm_ 139
5 0002
S09€
00<}

US 9,251,548 B1

Sheet 27 of 48

Feb. 2, 2016

U.S. Patent

owmm: owwm: &8 ME ommwr ovwr
0 0 0 0 0 0
o6et /' ogeL S oser oggl ogel oreL
5 / S L &5 /7 s 7 s 7 5 <
Ix3L: INIT: ANIT: IVHILYIIHAYNO: aNIT: WHIALYI™AYND:
< < gcel <
5 ! H
—— lozge - gzLzed=A " [er18egegezl=A
s SN TavHD 9va. 5 TIVHD dvea:
S C 3
0 0sel oLel 0
4=DNIddVIN ‘ 5
5 TOVASYIVE: oLl
0cgL : (¥ L-l=INA
5 ! HOLISIA SINTLX3 139
So€l | r Z
4 0002
5081
00€}

US 9,251,548 B1

Sheet 28 of 48

Feb. 2, 2016

U.S. Patent

m%wr omwm: owk: owmm: omM ov8l
0 0 0 0 0 0
06eL /' ogel 08l ooel osel ovel
s 4 % s, 7 { s 5 <
X3l aANIT: aNIT: WHILYTIHAVND: aNIT: WH3LYTIHAYND:
< < gcel /\
5 L _
- [ozge - szLzal=Al" [grreegegeel=A
e d3iny TavHD uve: 5 THIVHO dva: .
P« 0z8) z
)
5 018l
0e8)

0oclL

Goel

\/\

Goglk

[v L-]=NIA
HOLISIA SINILXT 139

5

000¢

U.S. Patent Feb. 2, 2016 Sheet 29 of 48 US 9,251,548 B1

1810 1500 i 1305 1300 1830
S _ H % i\/ s
0 .| :DATASPACE 0
1310 MAPPING=G 1330 7
9 T 5
:BAR CHART 1820 ‘BAR CHART ‘RULER
Y=[2352538175] S_lY=[22125 -1 3.52.6] B

‘QUAD ‘LINE QUAD 'LINE ‘LINE TEXT
9 ;9 P9 P9 i
{ 1340 {1350 {1380 : 1370 P 1380 | 1300

0 \/\1840 0 \[\1850 0 \j\1860 0 N 1870 o k880]| o \N890

2110
:COMPOSITE COMMAND S
2125w :CREATENODECOMMAND » - TRANSFORM J~ 2120
2130----- 'REPARENTCHILDRENCOMMAND
21350+ 'REPLACECHILDCOMMAND

FIG. 21

U.S. Patent Feb. 2, 2016 Sheet 30 of 48 US 9,251,548 B1
4 i P9 5
0 UPDATE VISITOR .| :DATASPACE 0
1310 MAPPING=G
1330 ¢
9) T 5
‘BAR CHART 1820 :BAR CHART ‘RULER
Y =[23.52.53.81.75] S .lvy= [221.25 -1 3.52.8] —

DN N

NI

:QUAD ‘LINE :QUAD LINE LINE TEXT
5 75 %)
- 1340 1350 71360 1370 é 1380 1390
2110
:COMPOSITE COMMAND S
"CREATENODECOMMAND # TRANSFORM ~J~2120
"REPARENTCHILDRENCOMMAND Frosmeoemenn s
'REPLACECHILDCOMMAND ||
2205----4H:CREATENODECOMMAND » GROUP S~ 2200
2210 ‘REPARENTCHILDRENCOMMAND
2215+~ :REPLACECHILDCOMMAND

FIG. 22

U.S. Patent Feb. 2, 2016 Sheet 31 of 48 US 9,251,548 B1

1810 1500 1805 ¢ ;1305 1300 1830
5 ‘ P9
0 ™| :DATASPACE 0
A MAP/P'NGze 1330 7
‘BAR CHART 1820 ‘BAR CHART SULER
Y=[2352538175]| 9.4\Y=[22125 -1 3.52.6] :

0 P TN AN

:QUAD ‘LINE :QUAD ‘LINE ‘LINE TEXT
5 F O 75 ; P9 M
i 1340 1350 {1360 1370 i 1380 1390
0 M yaug [0 M1850 [o fnisso [jr1870[o |msso[o pr1seo
2110
:COMPOSITE COMMAND 5}
-CREATENODECOMMAND i :-TRANSFORM ~J~2120

:REPARENTCHILDRENCOMMAND
:REPLACECHILDCOMMAND ||
:CREATENODECOMMAND - :GROUP
‘REPARENTCHILDRENCOMMAND '
:REPLACECHILDCOMMAND

.~ 2200

-GEODE ~J~2300

2305------ :CREATENODECOMMAND >
2310------ :REPARENTCHILDRENCOMMAND
2315~ ‘REPLACECHILDCOMMAND

FIG. 23

U.S. Patent

Feb. 2, 2016 Sheet 32 of 48 US 9,251,548 B1
1810 1500 1805w o 1305 1300 1830
A : P9
0 UPDATE VISITOR .| :DATASPACE 0
MAPPING=G
:BAR CHART 1820 AR CHART RULER
Y=[235253.81.75] S [2] 25 -1 3.52.6] e
0 S
1320
:QUAD ‘LINE :QUAD LINE LINE TEXT
P9 ; L 2] !
{1340 1350 {1360 51370 i 1380 i 1390
0 M 1ga0 | 0 1850 o N~1860 o MV18701 In1880] o 1890
2110
:COMPOSITE COMMAND S
‘CREATENODECOMMAND » :TRANSFORM J~2120

:REPARENTCHILDRENCOMMAND

:REPLACECHILDCOMMAND

:CREATENODECOMMAND

fpl :GROUP ST2200

‘REPARENTCHILDRENCOMMAND

:REPLACECHILDCOMMAND

:CREATENODECOMMAND

~J~ 2300

:REPARENTCHILDRENCOMMAND

‘REPLACECHILDCOMMAND

:CREATENODECOMMAND

:GEODE

‘REPARENTCHILDRENCOMMAND

:REPLACECHILDCOMMAND

‘GEODE ~ +J~2400

FIG. 24

U.S. Patent Feb. 2, 2016 Sheet 33 of 48 US 9,251,548 B1

1810 1500 1805 o ;1305 1300 1830
S i i 9
0 UPDATE VISITOR) ™| :DATASPACE 0
MAPPING=G
1910 1330

:BAR CHART :BAR CHART
Y=[2352538175] S.Y=[221.25 -1 3.528]

:QUAD :LINE :QUAD :LINE ‘LINE TEXT
i 9 s {9 P 7 B g
{1340 i 1350 {1360 £ 1370 {1380 1390

2110
:COMPOSITE COMMAND S
:CREATENODECOMMAND »i TRANSFORM 12120
‘REPARENTCHILDRENCOMMAND ' :
'REPLACECHILDCOMMAND _
:CREATENODECOMMAND » GROUP J~2200

'REPARENTCHILDRENCOMMAND
‘REPLACECHILDCOMMAND .
‘CREATENODECOMMAND > :GEODE RJ"2300
"REPARENTCHILDRENCOMMAND ' S
‘REPLACECHILDCOMMAND

:CREATENODECOMMAND »- .GEODE ~ J~2400
:REPARENTCHILDRENCOMMAND '
:REPLACECHILDCOMMAND .
2505------ :CREATENODECOMMAND >' :GROUP 5\1‘2500
2510------ :REPARENTCHILDRENCOMMAND : :
2515---- :REPLACECHILDCOMMAND

FIG. 25

U.S. Patent Feb. 2, 2016 Sheet 34 of 48 US 9,251,548 B1
1810 1500 1805 o , 1305 1300 1830
¢ N P9 9
0 UPDATE VISITOR LA :DATASPACE 0
1310 MAPPING=G
1330 7
$ S
:BAR CHART 1820 ‘BAR CHART RULER
Y=[2352538175)| S.1v=[22125 -1 3.52.6] DER

/\ 1 1323/\

AN

:QUAD LINE :QUAD LINE ‘LINE TEXT
: Fa ;9) ! i
{ 1340 i 1350 {1360 {1370 i 1380 i 1390
0 Migap | 0 N 1850 0 L1860 0 N 1870 o km8sol o L NM890
2110
:COMPOSITE COMMAND S
2605----- ‘CREATENODECOMMAND »i GROUP J2600
2610+ "REPARENTCHILDRENCOMMAND '
2615 :REPLACECHILDCOMMAND

FIG. 26

US 9,251,548 B1

U.S. Patent Feb. 2, 2016 Sheet 35 of 48
1810 1500 18059 o 1305 1300 1830
<, ‘ P9 Y,
5 ~.| :DATASPACE 0
MAPPING=G
13;0 /\1330
:BAR CHART 1820 :BAR CHART ‘RULER
Y =[23525381.75] <Y =[221.25 -1 3.52.6] =
S
1320
:QUAD 'LINE QUAD :LINE LINE TEXT
; 3 ! ? i i
i 1340 1350 {1360 g1370 i 1380 1390
2110
:COMPOSITE COMMAND BY
:CREATENODECOMMAND » GROUP J2600
‘REPARENTCHILDRENCOMMAND '
‘REPLACECHILDCOMMAND
2705 -+---- .CREATENODECOMMAND > GROUP RJ72700
2710 :REPARENTCHILDRENCOMMAND '
2715 e ‘REPLACECHILDCOMMAND

FIG. 27

U.S. Patent Feb. 2, 2016 Sheet 36 of 48 US 9,251,548 B1

1810 1500 1805 ¢ : 1305 1300 1830
¢ ‘)
0 UPDATE\HSWC%D ™| :DATASPACE 0
, MAPPING=G
1310 1330 ;
‘BAR CHA 1820 ‘BAR CHART RULER
Y=[23525/4175]] S.1Y=[22125 -1 3.52.6] ==

7 s N AN

:QUA ‘LINE :QUAD 'LINE :LINE TEXT
9 s L9 L9 M
{1340 i 1350 {1360 £ 1370 i 1380 i 1390

‘COMPOSITE COMMAND S
:CREATENODECOMMAND » GROUP S 2600
‘REPARENTCHILDRENCOMMAND ||~ e : '
‘REPLACECHILDCOMMAND
:CREATENODECOMMAND *’ :GROUP §J\27OO
'REPARENTCHILDRENCOMMAND
:REPLACECHILDCOMMAND

2805~ :CREATENODECOMMAND > :GEODE §J\2800
2810- ‘REPARENTCHILDRENCOMMAND
2815 ‘REPLACECHILDCOMMAND

FIG. 28

U.S. Patent Feb. 2, 2016 Sheet 37 of 48 US 9,251,548 B1

< i : 5 ’/\/ 6
0 UPDATE VISITO§ .| :DATASPACE 0
1310 MAPPING=G
) // 1330
A S / T 5§
‘BAR CHART 1820 :BAR CHART ‘RULER
Y=[235253817] 9.1y = [221.25 -1 3.52.6] =
1 <
1320
:QUAD :LINE/_I ‘QUAD ‘LINE ‘LINE ‘TEXT
i 9 i 9) i
{ 1340 i 1350 /1360 : 1370 i 1380 1390

0 M a0 | 0 M1850 | g (1860 | o M1870(o |ngeo| o (1890

:COMPOSITE COMMAND 3}

‘CREATENODECOMMAND » :GROUP (2600
:REPARENTCHILDRENCOMMAND ' :
:REPLACECHILDCOMMAND .
:CREATENODECOMMAND V :GROUP (2700
:REPARENTCHILDRENCOMMAND

‘REPLACECHILDCOMMAND _ ;
:CREATENODECOMMAND >‘ :GEODE i~ 2800

'REPARENTCHILDRENCOMMAND || 77
:REPLACECHILDCOMMAND

2905----- -CREATENODECOMMAND » GEODE {J~ 2900
2910----- "REPARENTCHILDRENCOMMAND ' '
29150-u-m- ‘REPLACECHILDCOMMAND

FIG. 29

U.S. Patent Feb. 2, 2016 Sheet 38 of 48 US 9,251,548 B1

FIG. 30

3000

U.S. Patent Feb. 2, 2016 Sheet 39 of 48 US 9,251,548 B1

START

3100 —~ CHANGE PROPERTY(IES) OF OBJECT(S) IN OBJECT
TREE

:

3110 —~ SET "DIRTY” BIT ASSOCIATED WITH OBJECT(S) IN
OBJECT TREE HAVING CHANGED PROPERTY(IES)

l

IF CHANGED PROPERTY(IES) ARE LIMIT
3120 — PROPERTIES, SET “DIRTY” BIT ASSOCIATED WITH
PARENT DATASPACE/COLORSPACE OBJECT

;

STEP THROUGH OBJECTS OF OBJECT TREE TO

3130~ DETERMINE THE EXTENTS OF THE DATA VALUES OF

EACH DATASPACE/COLORSPACE OBJECT’S
CHILDREN

l

PERFORM UPDATE TRAVERSAL OF OBJECT TREE TO1
CHANGE PROPERTY(IES) OF CORRESPONDING
3140 ——~ OBJECT(S) IN GRAPHICS RENDERING TREE AND TO
PERFORM DATASPACE/COLORSPACE

TRANSFORMATIONS

END

FIG. 31

US 9,251,548 B1

Sheet 40 of 48

Feb. 2, 2016

U.S. Patent

o%m: owwm: hmm: M? omw oqmr
0 0 0 0 0 0
sl ogel oel 09¢l , osel oveL
4/ 4, 4,/ 4 L L
X3l aNIT: aNI: IVHILY IIHAYNO: aNI: IVHILYTI™HAYND:
< < 0cel <
5 L ﬁ _
—— lozse 1-szLzel=Al §L18¢€59cCgeci=A
A s TIVHO OveE > TgvHO avE: [N,
s 0zs8l Z
- oce. oLEL 0
S
Z 0181
0£81 w [I=INNA
HOLISIA SINILX3 139

00¢€1

4

00c¢e

US 9,251,548 B1

Sheet 41 of 48

Feb. 2, 2016

U.S. Patent

om@M: omhwr mmm: owwm: omw | QMV
0 0 0 0 0 0
065l 4 ogeL S oL 0%l oseL oveL
i $ { S L {7 L S
1X3L: INIT: INIT: IWHILYTI™AYND: =INRE IVHILYTINAVND:
< < Qcel <
5 I _
S lozge 1- szizal = AL [srigegegecl=A
\\ KMI_Dm Iu_lm. <I.O m<m. $ |_|Mn_<Im W_<m. "
z 0z8l Z .
4=ONIddVI Z
5 JOVASVIVA |, 018l
0e8l G [8'€ S/ LI=NITA
oL |] HOLISIA SINILXT 139

00gl

US 9,251,548 B1

Sheet 42 of 48

Feb. 2, 2016

U.S. Patent

ﬁ.w%_ &2 omw ! ovwr
0 0 0 0
osel 08cl oL o9l osel oveL
§ / 4 L/ s, 7 L ¢, S
1xal AN AN TYHILYI™HAYND: aneT: IVHILYIHAYNO:

A,
.

&
#
s

-

0€81

EERISH

o/

00l

/\ 0zl

lozge L- gz 2=
THVHD 9ve:

4=ONIddVIA
A0V4SVYLVA: |~

w

goel

~—

. G09¢

~

[c18¢e6926¢€2l=
TIVHD avg:

(8¢ Ll=INIA
HOLISIA SINILX3 139
4

00ce

U.S. Patent Feb. 2, 2016 Sheet 43 of 48 US 9,251,548 B1

START

3300— STEP THROUGH OBJECTS OF OBJECT TREE

'

FOR EACH DATASPACE/COLORSPACE OBJECT,

3310 DETERMINE WHETHER THE PREVIOUSLY

DETERMINED EXTENTS OF THE OBJECT'S CHILDREN
SHOULD BE MODIFIED

!

[CHANGE EACH DATASPACE/COLORSPACE OBJECT'S |
3320—~ MAPPING BASED ON DETERMINED/MODIFIED
EXTENTS OF THE OBJECT'S CHILDREN

!

EXECUTE UPDATE METHOD FOR EACH OBJECT
WHOSE “DIRTY” BIT IS SET TO INSERT APPROPRIATE
COMMAND(S) INTO A COMPOSITE COMMAND

i

TRANSFORM DATA VALUES ASSOCIATED WITH
3340~~~ CHILDREN OF EACH DATASPACE/COLORSPACE
OBJECT BASED ON CHANGED MAPPING

!

EXECUTE COMPOSITE COMMAND TO REVISE THE
OBJECT(S) OF THE GRAPHICS RENDERING TREE

3330 —

3350~

END

FIG. 33

US 9,251,548 B1

Sheet 44 of 48

Feb. 2, 2016

U.S. Patent

N@E mwm_ ow\,? owoﬁ omwwr ovwr
0 0 0 0 0 0
o6ek /oL £ ogL 09eL osel ovel
4/ 4 L 4, 4§ 7
INEIE AN aNIT: IVHILYTIRNAYNO: aNIT: IVHILYII¥AvYNO:
< / 2eet /\
5 L _
————r 9zge - szLzzl=A [gLrLgegzgedl=A i
EEREEE TIVHD 9vg: $ 1HVYHO dvd:
i S
0
J=ONIddVIN <
5 SVISVIVE: 018l
0c8l w ; HOLISIA 31vadn
Goel | 0 4
4 00G1
s08lL
00€1

US 9,251,548 B1

Sheet 45 of 48

owme owwm: ﬁmwr ﬁw@ omww 1 oﬁw L
0 0 0 0 0 0
06st / ggel oel o9gk ogel over
w .-.. w \.. w \\ & ‘\\. 0 u\\ w .\\
INETE aNIT: aNIT: IWHILYIHAYNO: aNIT: WHILYTIHAYNO:
< < ozel <
) I : —
[9zge 1-GTLTed=Al~" srLgeseseel=A
EERIIH TavHD 9vg: TEVHD dva:

..:\s w / \ ONw_\ ﬁ .

Feb. 2, 2016

U.S. Patent

D=9ONIddVIA 5
5 IOV4SVYIVa: ol8l
0¢cgl ONIddVYIN : HOLISIA 3Lvadn
omoz<xo\,\ mowr m Z
00G 1

\/R\ Go8l
oogl

U.S. Patent Feb. 2, 2016 Sheet 46 of 48 US 9,251,548 B1

START

RENDER GRAPHICS AT GPU USING GRAPHICS
350 RENDERING TREE

:

RECEIVE USER INTERACTION WITH RENDERED
351 GRAPHICS

'

3520 USE OBJECTS OF OBJECT TREE TO PERFORM
SCRIPTED ACTIONS BASED ON THE USER
INTERACTION

END

FIG. 35

U.S. Patent Feb. 2, 2016 Sheet 47 of 48 US 9,251,548 B1

FIG. 36

N

RENDERED
PLOT
3600

US 9,251,548 B1

Sheet 48 of 48

Feb. 2, 2016

U.S. Patent

L€ "Old

009€ ——
101d
d343dN=d

B

00, —4——— 0 [SNOILdO_J[HogvIs Jla ™ &
lal jueig:inoge | NOILVYDO1 [al__sygynyood]
S IEISIUIE=
d713H S100T MIIA a3 3113
X |
HINHTS / /
\\ 1-G1€
0ce 0ge L-0Le

(SIMHOMLIN

US 9,251,548 B1

1
OBJECT TRANSFORMATION FOR OBJECT
TREES UTILIZED WITH MULTIPROCESSOR
SYSTEMS

RELATED APPLICATION

This application claims priority from and is a continuation-
in-part (CIP) of U.S. patent application Ser. No. 13/617,562,
filed Sep. 14, 2012, entitled “OBJECT TRANSFORMA-
TION FOR OBJECT TREES UTILIZED WITH MULTI-
PROCESSOR SYSTEMS,” which is a continuation of U.S.
patent application Ser. No. 12/059,319, filed Mar. 31, 2008
(now U.S. Pat. No. 8,300,060). The contents of these appli-
cations are incorporated herein by reference.

BACKGROUND

Contemporary computer systems typically include multi-
processor systems, where one of the processors includes a
general purpose processor (e.g., a central processing unit
(CPU)) and another one of the processors includes a special-
ized processing unit. The specialized processing unit may
include a dedicated processing unit designed to perform a
specific function, and is typically used to offload time con-
suming tasks from the general purpose processor. The spe-
cialized processing unit is usually designed to perform the
offloaded tasks more efficiently than the general purpose
processor. Specialized processing units may include, for
example, graphics processing units (GPUs), physics process-
ing units (PPUs), or digital signal processors (DSPs). A GPU
is one example of a specialized processing unit typically used
in a multiprocessor system which includes a dedicated graph-
ics rendering device that is designed to be efficient at manipu-
lating and displaying computer graphics.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more embodiments described herein and, together with the
description, explain these embodiments. In the drawings,

FIGS. 1A and 1B are diagrams depicting an overview of
exemplary embodiments described herein;

FIGS. 2A and 2B are diagrams depicting an overview of
the use of dataspace or colorspace objects for transforming
object tree coordinates, colors and/or data types/formats from
a first coordinate system(s), color space(s) and/or data type/
format(s) to a different coordinate system(s), color space(s)
and/or data type/format(s) for association with a graphics
rendering tree;

FIG. 3 is a diagram of a network according to an exemplary
implementation;

FIG. 4 is a block diagram of a device according to an
exemplary implementation;

FIG. 5 is an exemplary functional block diagram of the
device;

FIG. 6 is a flowchart of an exemplary process for creating
object trees for use in describing a graphical scene and for
rendering the graphical scene via a GPU;

FIG. 7 is a diagram of an exemplary graphical user inter-
face that may be implemented at a client;

FIG. 8 is a diagram of an exemplary object tree that
describes a graphical scene and the creation of a graphics
rendering tree from the object tree;

FIGS. 9A and 9B illustrate the conversion of data associ-
ated with an object from a first data type/format to a different
data type/format for use by the GPU;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 10 illustrates the conversion of coordinates of objects
in a first coordinate system associated with an object tree to a
second coordinate system associated with a graphics render-
ing tree;

FIG. 11 illustrates the conversion of color values of objects
in a first color space associated with an object tree to a second
color space associated with a graphics rendering tree;

FIG. 12 is a flowchart of an exemplary process for creating
a graphics rendering tree based on a corresponding object
tree;

FIG. 13 is a diagram of an object tree according to one
exemplary implementation;

FIG. 14 is a diagram of a graphical plot that corresponds to
the graphical scene described by the object tree of FIG. 13;

FIG. 15 graphically depicts an example of block 1220 of
FIG. 12;

FIG. 16 graphically depicts an example of block 1240 of
FIG. 12;

FIG. 17 is a flowchart of an exemplary process for updating
the object tree and graphics rendering tree according to a first
exemplary embodiment;

FIGS. 18A and 18B depict the use of “dirty” bits in asso-
ciation with each object of the object tree of FIG. 13;

FIG. 19 is a flowchart of an exemplary process for perform-
ing an update traversal of an object tree to revise the corre-
sponding graphics rendering tree according to a first exem-
plary embodiment;

FIGS. 20A-20E depict the determination of data value
extents, corresponding to block 1910 of FIG. 19, according to
one exemplary implementation;

FIGS. 21-29 graphically depict examples of blocks 1930
and 1940 of FIG. 19;

FIG. 30 is a diagram of a graphical plot that corresponds to
the graphical scene described by the object tree of FIG. 18B;

FIG. 31 is a flowchart of another exemplary process for
updating the object tree and graphics rendering tree according
to a second exemplary embodiment;

FIGS. 32A-32C depict the determination of data values
extents, corresponding to block 3130 of FIG. 31, according to
an exemplary implementation;

FIG. 33 is a flowchart of an exemplary process for perform-
ing an update traversal of an object tree to revise the corre-
sponding graphics rendering tree according to a second exem-
plary embodiment;

FIG. 34A graphically depicts an example of block 3310 of
FIG. 33;

FIG. 34B graphically depicts an example of block 3320 of
FIG. 33;

FIG. 35 is a flowchart of an exemplary process for render-
ing graphics based on a previously created graphics rendering
tree;

FIG. 36 illustrates an example of a graphics plot rendered
using a graphics rendering tree; and

FIG. 37 illustrates another example of a graphics plot ren-
dered using a graphics rendering tree.

DETAILED DESCRIPTION

The following detailed description refers to the accompa-
nying drawings. The same reference numbers in different
drawings may identify the same or similar elements. Also, the
following detailed description does not limit the invention.

Specialized processing units may utilize certain organiza-
tions, types and/or formats of data better than other organi-
zations, types or formats of data. For example, a specialized
processing unit may efficiently handle code objects having a
certain organization. Code objects (hereinafter “objects™)

US 9,251,548 B1

3

may include pieces of software that are made up of modular-
ized code, where the modules are referred to as “objects.” An
“object” as the term is used herein refers to a self-contained
entity that may consist of both data and manipulation proce-
dures (e.g., functionality). An “object” is a basic building
block of programs in object-oriented programming. Data
associated with a given object may be set as properties of that
object.

In object oriented programming, an object is a piece of
code that accepts information and/or makes information
available that is compliant with a known or published format
(e.g., compliant with a published input or output interface). In
object oriented programming, a programmer does not have to
be concerned about, or have detailed knowledge of, the code
that makes up a given object when the programmer wants to
create other code that may use and/or interact with the object.
The programmer only needs to make sure his code makes
information available to the object in a compliant format
and/or receives information from the object via a compliant
format. Object oriented programming techniques allow com-
plex programs (e.g., complex graphics programs) to be writ-
ten by several individuals without requiring that one indi-
vidual know the details of what is in an object developed by
another individual.

Object oriented code may be implemented in an environ-
ment that allows objects to be arranged in formations, such as
hierarchies. For example, a hierarchy may include objects
arranged in a tree-like structure with branches and/or leaves,
a parent object and/or child/grandchild objects, etc. As
described herein, multiple object trees may be created by a
processing algorithm implemented by a general purpose pro-
cessor. One of the created multiple object trees may be opti-
mized to run on a different processor from the general pur-
pose processor, such as a specialized processing unit. The
object tree may, for example, be optimized so that a desired
(e.g., an optimal) performance may be achieved when the
object tree is processed by the specialized processing unit. As
one example, data associated with one of the multiple objects
may be converted to a format that provides a desired, e.g.,
best, performance from the specialized processing unit.

In one exemplary embodiment where the specialized pro-
cessing unit includes a GPU, a user may specify a graphical
scene to be rendered and a first object tree may be created to
describe the graphical scene based on the user specification. A
second graphics rendering tree may be created, based on the
first object tree, where the second graphics rendering tree is
optimized to provide a certain performance from the GPU
(e.g., a specified performance, a threshold performance, a
best performance, an optimum performance, etc.). During
this optimization, for example, data in the first object tree may
be converted to a format that provides the certain performance
from the GPU (e.g., fastest and/or most efficient graphics
rendering). In one embodiment, data in each of the objects of
the first object tree may be converted to a format that provides
the certain performance from the GPU. The GPU may sub-
sequently use the second graphics rendering tree for render-
ing the graphical scene specified by the user. Use of the
optimized graphics rendering tree can enhance the speed
and/or efficiency of the overall graphics rendering process.
Creation of the graphics rendering tree, which is optimized to
the GPU, prior to rendering the graphics, thus, eliminates “on
the fly” data/object conversion which can slow down the
rendering process.

For efficient execution by the GPU, objects in the graphics
rendering tree may have coordinates in a three dimensional
coordinate system and colors in a true color space. However,
the coordinates and colors of the objects in the object tree may

10

15

20

25

30

35

40

45

50

55

60

65

4

be in other coordinate systems or color spaces. For example,
the coordinates of objects in the object tree may be in a polar
coordinate system and/or another type of coordinate system.
Additionally, the coordinate and color values in the object tree
may be stored in various different data types and/or formats.
However, the coordinate and color values in the graphics
rendering tree may have to be in a specific data type and/or
format to obtain the best performance from the GPU. Thus, to
ensure that different objects agree on the exact conversion
between the different coordinate systems and/or color spaces,
“dataspace” or “colorspace” objects may be inserted into the
object tree to perform data transformation/conversion for
related child objects. The dataspace and colorspace objects
may perform data transformation/conversion for related child
objects so that the objects in the graphics rendering tree will
have their data stored in the proper coordinate system, color
space and/or data type/format to obtain the certain perfor-
mance (e.g., best performance) from the GPU.

Optimization of the graphics rendering tree can mean that
data associated with a graphics rendering tree has been con-
verted to a format that maximizes the speed and/or efficiency
of use of that data by the GPU, and/or that contents of the
graphics rendering tree have been organized and/or ordered
(e.g., sorted) to increase the speed and/or efficiency of graph-
ics rendering performed by the GPU. “Certain performance”
as referred to herein may include a best performance, an
optimum performance, a determined or specified perfor-
mance and/or a threshold performance. A best performance
may mean that a speed associated with the execution of a
process by a specialized processing unit (e.g., a GPU) is
enhanced (e.g., maximized) relative to using an object tree
that has not had its data converted to a format the maximizes
the speed and/or efficiency of use of that data by the GPU, or
that has not been organized and/or ordered to increase the
speed and efficiency of the graphics rendering performed by
the GPU.

Overview

FIG. 1A illustrates an overview of an exemplary embodi-
ment involving the generation of multiple object trees for use
by respective ones of multiple processing units, where one of
the multiple processing units includes a specialized process-
ing unit. In the exemplary embodiment of FIG. 1A, a peer tree
of a first object tree is generated that is optimized to provide
the certain performance (e.g., best performance) from the
specialized processing unit.

As shown in FIG. 1A, a first object tree 100 may be gen-
erated based on user input received by a processing algorithm
105, where the contents of object tree 100 may then be used
by a processor 125. A peer object tree 110 may be generated,
based on the contents of object tree 100, where the contents of
peer object tree 110 are optimized to provide the certain
performance (e.g., best performance) from specialized pro-
cessing unit 130. Processing algorithm 105 may include any
algorithm that can receive user input and generate an object
tree 100 for use by processor 125. Object tree 100 may
include one or more objects 115, which may be generated
from a library (not shown), a toolbox, or the like, based on the
user input and processing algorithm 105. The objects 115 of
object tree 100 may be used by processor 125 during algo-
rithm execution. The objects 115 of object tree 100 are
depicted as linked in a tree structure. In other implementa-
tions, however, objects 115 may be linked as an acyclic graph
or any other suitable linking structure.

Processor 125 may include any general purpose processor,
such as, for example, a microprocessor or central processing

US 9,251,548 B1

5

unit (CPU). Specialized processing unit 130 may include a
dedicated processing unit designed to perform a specific
function. Specialized processing units are typically used to
offload time consuming tasks from a central processing unit
(CPU). Specialized processing units may perform the off-
loaded tasks more efficiently then a general purpose CPU or
microprocessor. Specialized processing unit 130 may
include, for example, a graphics processing unit (GPU), a
physics processing unit (PPU), a digital signal processor
(DSP), or other type of specialized processing unit (e.g., field
programmable gate arrays (FPGAs)). A GPU may include a
dedicated graphics rendering device (e.g., for a personal com-
puter, workstation, or game console) that is designed to be
efficient at manipulating and displaying computer graphics. A
PPU may include a dedicated microprocessor designed to
handle physics calculations such as, for example, a physics
engine of a video game. Examples of calculations involving a
PPU might include rigid body dynamics, soft body dynamics,
collision detection, fluid dynamics, finite element analysis,
etc. A DSP may include a specialized processor designed to
specifically handle digital signal processing.

Peer object tree 110 (including the contents of each object
of'peer objecttree 110) may be generated from object tree 100
using another library (not shown) based on the contents of
object tree 100. The contents of peer object tree 110, includ-
ing the format of data associated with peer object tree 110, are
optimized, relative to the contents of object tree 100, for
providing the certain performance (e.g., best performance)
from specialized processing unit 130. As shown in FIG. 1A,
peer object tree 110 may include multiple objects 120. After
generation of peer object tree 110, objects 120 may be used by
specialized processing unit 130 during algorithm execution.
The objects 120 of peer object tree 110 are depicted as linked
in a tree structure. In other implementations, however, objects
120 may be linked as an acyclic graph or any other suitable
linking structure.

FIG. 1B illustrates an overview of another exemplary
embodiment where one of the multiple processors is a GPU.
As shown in FIG. 1B, object tree 100 may be generated based
on user input received by a graphics processing algorithm
105. The user input received by graphics processing algo-
rithm 105 may select the contents of a specific graphical scene
to be displayed and may set the parameters of the graphical
scene. A graphics rendering tree 110 may then be generated
which is optimized to provide the certain performance (e.g.,
best performance) from GPU 130 based on the contents of
object tree 100. The contents of graphics rendering tree 110,
including the format of data associated with graphics render-
ing tree 110, are optimized, relative to the contents of object
tree 100, for providing the certain performance from GPU
130.

As shown in FIG. 1B, graphics rendering tree 110 may
include multiple objects 120 linked in a tree structure. In other
implementations, the multiple objects 120 may be linked as
an acyclic graph or any other suitable linking structure. The
correspondence between objects in object tree 100 and graph-
ics rendering tree 110 may be maintained through the use of
cookies. A “cookie” as referred to herein refers to a unique
identifier that identifies an object of object tree 100 or graph-
ics rendering tree 110. Cookies may include any type of
unique identifier for identifying an object of object tree 100 or
graphics rendering tree 110 (e.g., numerical identifier, textual
identifier, etc.). Each object in object tree 100 may have a
cookie that refers to its corresponding object in graphics
rendering tree 110. Furthermore, each object in graphics ren-
dering tree 110 may have a cookie that refers to its corre-
sponding object in object tree 100. Thus, implementations

20

40

45

50

55

6

described herein may use cookies, instead of other tech-
niques, such as pointers, for maintaining correspondences
between objects of the two trees. In other implementations,
other means of pointing from an object in one tree to its
corresponding object in the other tree may be used. For
example, pointers, a combination of cookies and pointers, or
pointers and/or cookies in combination with other means of
pointing may be used. After generation of graphics rendering
object tree 110, objects 120 may be used by GPU 130 during
graphics rendering.

FIGS. 2A and 2B illustrate an overview of the use of
dataspace or colorspace objects for transforming object tree
coordinates, colors and/or data types/formats from a first
coordinate system(s), color space(s) and/or data type/
format(s) to a different coordinate system(s), color space(s)
and/or data type/format(s) for use with the graphics rendering
tree of FIG. 1B. As shown in FIG. 2A, an object tree 200
(corresponding to object tree 100 in FIG. 1A), or a portion of
an object tree 200, may include a parent object 205 connected
to multiple dataspace or colorspace objects. For purposes of
illustration, FIG. 2A depicts dataspace/colorspace object 210
and dataspace/colorspace 215 connected to parent object 205.
Dataspace/colorspace objects 210 and 215 may each include
either a dataspace object or a colorspace object. A dataspace
object may transform object tree coordinates and/or data
types/formats from a first coordinate system and/or data type/
format to a different coordinate system and/or data type/
format for use with the graphics rendering tree. A colorspace
object may transform object tree colors from a first color
space to another color space for use with the graphics render-
ing tree. Dataspace/colorspace objects 210 and 215, each
shown as a single object, may include two separate objects
(e.g., a colorspace object connected to a dataspace object).

As further shown in FIG. 2A, each colorspace/dataspace
object of object tree 200 may have one or more connected
child objects. For purposes of illustration, FIG. 2A depicts
child objects 220-1 and 220-2 connected to dataspace/color-
space object 210 and child objects 225-1 and 225-2 connected
to dataspace/colorspace object 215. Fewer or additional child
objects may be connected to objects 210 and 215. Each
dataspace/colorspace object of object tree 200 transforms
coordinates, colors and/or data types/formats of its child
objects from a first coordinate system, color space and/or data
type/format to a different coordinate system, color space and/
or data type/format. For example, dataspace/colorspace
object 210 transforms coordinates, colors and/or data types/
formats of child objects 220-1 and 220-2 and dataspace/
colorspace object 215 transforms coordinates, colors and/or
data types/formats of child objects 225-1 and 225-2.

Dataspace/colorspace object 210 and dataspace/color-
space object 215 may transform the coordinates, colors and/
or data types/formats of their child objects from a first coor-
dinate system, color space and/or data type/format associated
with object tree 200 to a second coordinate system, color
space and/or data type/format associated with the graphics
rendering tree. For example, coordinate data values in object
tree 200 may represent positions in a three-dimensional coor-
dinate system and color data values may represent positions
in some color space. The three dimensional coordinate sys-
tem may include, for example, a polar coordinate system or a
Cartesian coordinate system. In the same way, the color-space
may include an RGB color-space with values for each of the
three color components, or a color mapped space where the
data values are indices into the color map. Assume for sake of
an example, that coordinates relating to one or more objects in
object tree 200 may be in a three-dimensional Cartesian coor-
dinate system and the colors may be in a true color color-

US 9,251,548 B1

7

space. Additionally, the coordinate and color values relating
to one or more objects in object tree 200 may be stored in
various different data types and formats. In the example, the
coordinates, color values and data types/formats of data asso-
ciated with objects in the graphics rendering tree, however,
should be in the specific coordinate systems, color spaces
and/or data types/formats that provide a certain performance
(e.g., best performance) out of the GPU. Dataspace/color-
space object 210 and dataspace/colorspace object 215 may
transform the coordinates, colors and/or data types/formats of
their child objects using the same or different transforma-
tions. As shown in FIG. 2B, dataspace/colorspace object 210
may use a first transformation 260, while dataspace/color-
space object 215 may use a second transformation that is
different than the first transformation. For example,
dataspace/colorspace object 210 may perform a linear trans-
formation on its child objects, whereas dataspace/colorspace
object 215 may perform a nonlinear transformation (e.g.,
logarithmic) on its child objects.

If dataspace/colorspace object 210 or 215 includes a
dataspace object, then object 210 or 215 includes a transform
method that takes coordinate values in a first coordinate sys-
tem as an input and generates coordinate values in a second
coordinate system in a correct data type/format for the graph-
ics rendering tree. If dataspace/colorspace object 210 or 215
includes a colorspace object, then object 210 or 215 includes
a transform method that takes color values in a first color
space as an input and generates color values in a second color
space. For example, the colorspace object may perform a
color mapping transformation that converts color values from
scalar values to RGB color values. As another example, the
colorspace object may perform a color mapping transforma-
tion that converts color values of the object tree in LAB or
HSV colorspace to RGB colors of the graphics rendering tree.

FIG. 2B illustrates the transformation of coordinates, color
values and/or data types/formats associated with object tree
200 from a first coordinate system, color space and/or data
type/format associated with object tree 200 to a second coor-
dinate system, color space and/or data type/format associated
with the graphics rendering tree. As shown in FIG. 2B,
dataspace/colorspace object 210 may perform a transforma-
tion of the coordinates, color values and/or data types/formats
associated with child objects 220-1 and 220-2 and may pro-
vide those transformed coordinates, color values and/or data
types/formats to child objects 250-1 and 250-2 of graphics
rendering tree 230. As further shown in FIG. 2B, dataspace/
colorspace object 215 may perform a transformation of the
coordinates, color values and/or data types/formats associ-
ated with child objects 225-1 and 225-2 and may provide
those transformed coordinates, color values and/or data
types/formats to child objects 255-1 and 255-2. In one imple-
mentation, the converted data types/formats or transformed
coordinates or color values may be set as data types/formats,
coordinates and/or color values of appropriate child objects of
object tree 200 and then, during update traversal (described
further below), the converted data types/formats or trans-
formed coordinates or color values may be shared with cor-
responding child objects in graphics rendering tree 230.

Exemplary Network

FIG. 3 is an exemplary diagram of a network 300 in which
systems and methods described herein may be implemented.
Network 300 may include clients 310-1 through 310-N (re-
ferred to collectively as clients 310 and individually as client
310) that may connect to a server 320 via one or more
network(s) 330 using browsers 315-1 through 315-N (re-

10

15

20

25

30

35

40

45

50

55

60

65

8

ferred to collectively as browsers 315 and individually as
browser 315). Multiple clients 310 and one server 320 have
been illustrated as connected to network(s) 330 for simplicity.
In practice, there may be more or fewer clients and servers.
Also, in some instances, a client may perform one or more
functions of a server and a server may perform one or more
functions of a client.

Clients 310 may include devices, such as a personal com-
puter, a wireless telephone, a personal digital assistant (PDA),
a lap top, or another type of computation or communication
device, a thread or process running on one of these devices,
and/or an object executable by one of these devices. Clients
310 may each receive input from respective users, create
object trees and corresponding graphics rendering trees, and
render graphics based on the graphics rendering trees. Server
320 may include a server device that may, in some implemen-
tations, perform various aspects of object tree creation and
graphics rendering. For example, in one implementation, cli-
ent 310 may receive input from a user and send, via browser
315, the input to server 320. Server 320 may receive the input,
create the object tree and corresponding graphics rendering
tree, and send the object tree and corresponding graphics
rendering tree to browser 315. Client 310 may then render, via
browser 315, the graphics based on the graphics rendering
tree created at server 320.

Network(s) 330 may include one or more networks of any
type, including a local area network (LAN); a wide area
network (WAN); a metropolitan area network (MAN); a sat-
ellite network; a telephone network, such as the Public
Switched Telephone Network (PSTN) or a Public Land
Mobile Network (PLMN); an intranet, the Internet; or a com-
bination of networks. The PLMN(s) may further include a
packet-switched sub-network, such as, for example, General
Packet Radio Service (GPRS), Cellular Digital Packet Data
(CDPD), or Mobile IP sub-network.

Exemplary Architecture

FIG. 4 is an exemplary diagram of a device 400 that may
correspond to client 310 or server 320. Device 400 may
include a bus 410, a processor 125, a specialized processing
unit 130, a main memory 420, a read only memory (ROM)
430, a storage device 440, an input device 450, an output
device 460, and a communication interface 470. Bus 410 may
include a path that permits communication among the ele-
ments of device 400.

Processor 125 may include a processor, microprocessor, or
processing logic that may interpret and execute instructions.
Processor 125 may include, for example, a general purpose
processor or microprocessor (e.g., a CPU). Specialized pro-
cessing unit 130 may include a dedicated processing unit
designed to perform a specific function, such as, for example,
a graphics processing unit (GPU), a physics processing unit
(PPU), a digital signal processor (DSP), or another type of
specialized processing unit. Main memory 420 may include a
random access memory (RAM) or another type of dynamic
storage device that may store information and instructions for
execution by processor 125 and/or specialized processing
unit 130. ROM 430 may include a ROM device or another
type of static storage device that may store static information
and instructions for use by processor 125 and/or specialized
processing unit 130. Storage device 440 may include a mag-
netic and/or optical recording medium and its corresponding
drive.

Input device 450 may include a mechanism that permits an
operator to input information to device 400, such as a key-
board, a mouse, a pen, voice recognition and/or biometric

US 9,251,548 B1

9

mechanisms, etc. Output device 460 may include a mecha-
nism that outputs information to the operator, including a
display, a printer, a speaker, etc. Communication interface
470 may include any transceiver-like mechanism that enables
device 400 to communicate with other devices and/or sys-
tems. For example, communication interface 470 may
include mechanisms for communicating with another device
or system via a network, such as network(s) 330.

Device 400, consistent with the embodiments described
herein, may perform certain operations or processes, as will
be described in detail below. Device 400 may perform these
operations in response to processor 125 and/or specialized
processing unit 130 executing software instructions con-
tained in a computer-readable medium, such as memory 420.
A computer-readable medium may be defined as a physical or
logical memory device.

The software instructions may be read into memory 420
from another computer-readable medium, such as data stor-
age device 440, or from another device via communication
interface 470. The software instructions contained in memory
420 may cause processor 125 and/or specialized processing
unit 130 to perform operations or processes that will be
described later. Alternatively, hardwired circuitry may be
used in place of or in combination with software instructions
to implement embodiments described herein. Thus, imple-
mentations described herein are not limited to any specific
combination of hardware circuitry and software.

Although FIG. 4 shows example components of device
400, in some implementations, device 400 may include fewer,
different, or additional components than those depicted in
FIG. 4.

Exemplary Client Functional Diagram

FIG. 5 is an exemplary functional diagram of device 400.
The diagram of FIG. 5 depicts functional components that
may be implemented by processor 125, or in the case of data
or objects, implemented in memory 420, ROM 430 or storage
device 440. As depicted in FIG. 5, ata functional level, device
400 may include a technical computing environment (TCE)
510, a graphical user interface (GUI) 520, and libraries A
530-1 through N 530-N.

TCE 510 may include any hardware and/or software based
logic that provides a computing environment that allows
users to perform tasks related to disciplines, such as, but not
limited to, mathematics, science, engineering, medicine,
business, etc. In one implementation, TCE 510 may include a
dynamically-typed programming language (e.g., the M lan-
guage) that can be used to express problems and/or solutions
in mathematical notations. For example, one or more lan-
guages provided in TCE 510 may use an array as a basic
element, where the array may not require dimensioning. TCE
510 may be adapted to perform matrix and/or vector formu-
lations that can be used for data analysis, data visualization,
application development, simulation, modeling, algorithm
development, etc. These matrix and/or vector formulations
may be used in many areas, such as statistics, image process-
ing, signal processing, control design, life sciences modeling,
discrete event analysis and/or design, state based analysis
and/or design, etc.

TCE 510 may further provide mathematical functions and/
or graphical tools (e.g., for creating plots, surfaces, images,
volumetric representations, etc.). In one implementation,
TCE 510 may provide these functions and/or tools using
toolboxes (e.g., toolboxes for signal processing, image pro-
cessing, data plotting, parallel programming, etc.). In another
implementation, TCE 510 may provide these functions as

10

15

20

25

30

35

40

45

50

55

60

65

10

block sets. In still another implementation, TCE 510 may
provide these functions in another way, such as via a library,
etc.

TCE 510 may be implemented as a text-based environment
(e.g., MATLAB® (from “The Mathworks”); Octave; Python;
Comsol Script; MATRIXx from National Instruments; Math-
ematica from Wolfram Research, Inc.; Mathcad from Math-
soft Engineering & Education Inc.; Maple from Maplesof;
Extend from Imagine That Inc.; Scilab from The French
Institution for Research in Computer Science and Control
(INRIA); Virtuoso from Cadence; Modelica or Dymola from
Dynasim; Ptolemy from the University of California at Ber-
keley; etc.), a graphically-based environment (e.g., Sim-
ulink®, Stateflow®, SimEvents™, etc., by The MathWorks,
Inc.; VisSim by Visual Solutions; LabView® by National
Instruments; Dymola by Dynasim; SoftWIRE by Measure-
ment Computing; WiT by DALSA Coreco; VEE Pro or Sys-
temVue by Agilent; Vision Program Manager from PPT
Vision; Khoros from Khoral Research; Gedae by Gedae, Inc.;
Scicos from (INRIA); Virtuoso from Cadence; Rational Rose
from IBM; Rhopsody or Tau from Telelogic; aspects of a
Unified Modeling Language (UML) or SysML environment;
etc.), or another type of environment, such as a hybrid envi-
ronment that includes one or more of the above-referenced
text-based environments and one or more of the above-refer-
enced graphically-based environments.

GUI 520 may include any type of graphical interface that
may receive user input and/or may cause one or more graph-
ics to be rendered for display. For example, GUI 520 may
receive user input that selects a type of graphics to be dis-
played, and the parameters of the graphics, and subsequently
cause the graphics to be displayed.

Library A 530-1 may include a library of objects, and
associated data, that may be used for constructing an object
tree or acyclic graph that, for example, describes a graphical
scene. In other implementations, a toolbox may be used
instead of, or in addition to, library A 530-1. Library A 530-1
may be accessed to retrieve appropriate objects which can be
assembled in the object tree for describing the graphical
scene. For example, in one embodiment, library A 530-1 may
be accessed based on user input. Various different objects
may be stored in library A 530-1 depending on the type of
processing algorithm 105 being implemented. If the process-
ing algorithm (e.g., processing algorithm 105) includes a
graphics processing algorithm, examples of objects that may
be contained in library A 530-1 include (but are not limited to)
an “axes” object, a “dataspace” object, a “colorspace” object,
a “surface” object, a “ruler” object, a “line” object, a “quad-
rilateral” object and a “text” object.

The “axes” object may include a composite object that
groups together a number of simpler objects to provide a
better user interface. When an “axes” object is created, one or
more additional simpler objects are created including (but not
limited to), for example, a “dataspace” object, a “colorspace”
object, one or more “ruler” objects, a “box” object and/or a
“clipnode” object. These simpler objects may be called “child
objects” and the “axes” object may set at least a portion of the
properties of these child objects. The properties of the “axes”
object, thus, may “pass through™ to the properties of the child
objects. The “dataspace” object and the “color space” object
has been described above with respect to FIGS. 2A and 2B.

The “surface” object may include properties that control
how the “surface” object’s peer object in the graphics render-
ing tree generates a visual representation of a function over a
two dimensional parametric domain. The “surface” object
may have three properties named “XData,” “YData,” and
“ZData.” The “XData” property may specify the X coordi-

US 9,251,548 B1

11

nates of columns of the parametric space. The “YData” may
specify theY coordinates of columns of the parametric space.
The “XData” and “YData” may include one-dimensional
vectors with M values in the “YData” and N values in the
“XData.” The “ZData” property may define the Z coordinates
of the space and may include a two dimensional array with
dimensions MxN.

The “ruler” object may include properties that control how
the “ruler” object’s peer object in the graphics rendering tree
draws tick marks and labels for one axis of the “Axes” object.
The “axes” object may create one ruler for the X axis, another
for the Y axis, and another one for the Z axis. The “ruler”
object may create two child objects. One of the two child
objects may include the “line” object that may include prop-
erties that control how the “line” object’s peer object in the
graphics rendering tree draws the tick marks. The other of the
two child objects may include the “text” object that may
include properties that control how the “text” object’s peer
object in the graphics rendering tree draws the labels. The
“line” object may include properties that control how the
“line” object’s peer object in the graphics rendering tree
renders one or more continuous or disjoint line segments. The
“quadrilateral” object may include properties that control
how the “quadrilateral” object’s peer object in the graphics
rendering tree draws three dimensional coordinates and fills
the interior of a bounding quadrilateral.

The “quadrilateral” object may also control how the “quad-
rilateral” object’s peer object in the graphics rendering tree
fills the interior of a bounding quadrilateral with a solid color,
interpolates four input colors, or performs lighting calcula-
tions. The “text” object may include properties that control
how the “text” object’s peer object in the graphics rendering
tree draws characters to the screen in the graphical scene.

Library N 530-N may include another library of objects,
and associated data, that may be used for constructing a peer
object tree, such as, for example, graphics rendering tree 110,
that may be used by GPU 130 for rendering the graphical
scene described by the object tree. In other implementations,
a toolbox may be used instead of, or in addition to, library N
530-N. Library N 530-N may be accessed to retrieve appro-
priate objects, based on the contents of the corresponding
object tree, which can be assembled in the graphics rendering
object tree for use by GPU 130. Various different objects may
be stored in library N 530-N depending on the type of pro-
cessing algorithm 105 being implemented. The contents of
library N 530-N may be changed due to, for example, chang-
ing performance characteristics of the specialized processing
unit (e.g., the GPU). In other implementations, another
library may be “ported” to enable the use of different objects
in the peer object tree (e.g., graphics rendering tree). If the
processing algorithm includes a graphics processing algo-
rithm, examples of objects that may be contained in library N
530-N include (but are not limited to) a “viewport” object, a
“camera” object, a “group” object and a “geode” object.

A “viewport” object may include functionality for control-
ling the size and position of the window in which the graphi-
cal scene is rendered. A “camera” object may include func-
tionality for transforming a given coordinate system to the
rendering system coordinates. For example, a “camera”
object may define a mapping from three dimensional world
coordinates to two dimensional coordinates within the cur-
rent viewport. A “group” object may act as a placeholder so
that the structure of the object tree and peer object tree match.
A “geode” object may include functionality for causing
aspects of the graphical scene to be drawn (e.g., points, lines,
triangles or quadrilaterals).

35

40

45

55

12

Although FIG. 5 shows example functional components of
device 400, in some implementations, device 400 may
include fewer, different, or additional functional components
than those depicted in FIG. 5.

Exemplary Tree Creation Process

FIG. 6 is a flowchart of an exemplary process for creating
object trees for use in describing a graphical scene and for
rendering the graphical scene via a GPU. In one implemen-
tation, the process exemplified by FIG. 6 may be performed
by processor 125 of a client 310. In another implementation,
the process exemplified by FIG. 6 may be performed by
processor 125 of server 320. In a further implementation,
blocks 600 and 610 of FIG. 6 may be performed by processor
125 ofaclient 310 and blocks 620 and 630 may be performed
by processor 125 of server 320.

The exemplary process may begin with the receipt of user
input regarding a graphical scene (block 600). The user input
may specity a type of graphical scene that is to be rendered,
including parameters associated with the graphical scene. For
example, the graphical scene may be a three dimensional
graph and the parameters may include x, y and z values that
are to be plotted in the three dimensional graph. The user may,
for example, use a graphical user interface (GUI) at client 310
to enter the user data for specifying the graphical scene. FI1G.
7 illustrates an exemplary GUI 700 that a user may use to
enter data for specifying the graphical scene. GUI 700 may be
displayed by browser 315. The GUI, similar to GUI 700
shown in FIG. 7, may include various fields, windows, or data
entry portions that permit the user to enter the input regarding
the graphical scene. The GUI may include fields, windows or
data entry portions for entering or identifying graphical scene
parameters, labels, etc.

An object tree may be created, using library A 530-1, based
on the user input to describe the graphical scene (block 610).
Library A 530-1 may beused to retrieve appropriate objects to
describe the graphical scene specified by the user, with prop-
erties of the retrieved objects being set based on the param-
eters provided by the user. FIG. 8 illustrates object tree 200
that includes objects 210, 215, 220-1, 220-2, 225-1 and 225-2
linked together in a tree structure.

Exemplary embodiments may create another structure,
e.g., a tree, contemporaneously with object tree 200, where
the created structure is optimized for a certain performance
(e.g., best performance) from the GPU. For example, a graph-
ics rendering tree may be created, contemporaneously with
the creation of the object tree, using library N 530-N, based on
the object tree (block 620). Each object in the object tree may
have one or more corresponding graphics rendering objects
that may be retrieved from library N 530-N. Each correspond-
ing graphics rendering object may be optimized to provide the
certain performance (e.g., best performance) from the GPU.
For example, data associated with each graphics rendering
object may be converted to a type/format that provides the
certain performance (e.g., best performance) from the GPU.
The properties of each graphics rendering object may be set
based on the user input and/or based on data associated with
the object tree. Each of the graphics rendering objects may be
linked together to form a graphics rendering tree. FIG. 8
illustrates the creation of an exemplary graphics rendering
tree 230 based on object tree 200. As shown in FIG. 8, each
object of object tree 200 has one or more corresponding
objects in graphics rendering tree 230.

Contemporaneously with the creation of the object tree,
selected object tree coordinates, colors and/or data types/
formats may be converted to a different coordinate system(s),

US 9,251,548 B1

13

a different color space(s) and/or different data type(s)/
format(s) for association with the graphics rendering tree
(block 630). A “dataspace” object may perform the conver-
sion/transformation of the object tree coordinates and/or data
types/formats. A “colorspace” object may perform the con-
version/transformation of the object tree color values. For
example, types/formats of data associated with objects of
object tree 200 may be converted to different types/formats of
data, which are optimized for use by a GPU, for association
with the graphics rendering tree.

By way of example, as shown in FIGS. 9A and 9B, three
arrays of data, X data 910, Y data 920, and Z data 900 asso-
ciated with a child object of object tree 200 and representing
object data points in Cartesian coordinate space, may be
converted by dataspace object 210 from a first data type/
format to a second data type/format for association with the
graphics rendering tree. As depicted in FIG. 9A, Z data 900
may include an array of double precision values, X data 910
may include an array of 32 bit integer values and Y data 920
may include an array of 32 bit integer values.

In FIG. 9B, Z data 900, X data 910 and Y data 920 may be
converted to an array 930 of single precision floating point
numbers that may be set as values in object 220-1 and to an
array 940 of single precision floating point numbers that may
be set as values in object 220-2. Arrays 930 and 940 may
further be set as values in objects 250-1 and 250-2 of graphics
rendering tree 230. The exemplary data format conversion
depicted in FIGS. 9A and 9B may be repeated for appropriate
other objects of object tree 200 to convert the data associated
with those objects to a type/format that provides a certain
performance (e.g., best performance) from the GPU.

Additionally, object tree 200 coordinate values may be
converted from values in a first coordinate system to coordi-
nate values in a different coordinate system for association
with the graphics rendering tree. For example, as shown in
FIG. 10, coordinates 1000 in a coordinate system A associ-
ated with child object 220-1 of object tree 200 may be con-
verted, by dataspace object 210, to coordinates 1010 in coor-
dinate system B for association with the corresponding child
object 250-1 of graphics rendering tree 230. Dataspace object
210, thus, may perform coordinate transformation to convert
the coordinates of object tree 200 in a first coordinate system
to coordinates of graphics rendering tree 230 in a second
coordinate system. The second coordinate system may, for
example, be the coordinate system used by the GPU when
rendering graphics.

Furthermore, object tree 200 color values may be con-
verted from values in a first color space to color values in a
different color space for association with the graphics render-
ing tree. For example, as shown in FIG. 11, colors 1100 in
color space A associated with child object 220-1 of object tree
200 may be converted, by colorspace object 210, to colors in
color space B for association with the corresponding child
object 250-1 of graphics rendering tree 230. Colorspace
object 210, thus, may perform color transformation to convert
the color values of object tree 200 in a first color space to color
values of graphics rendering tree 230 in a second color space.
The second color space may, for example, be the color space
used by the GPU when rendering graphics.

The converted data types/formats, transformed coordinates
or transformed colors shown in FIGS. 9A, 9B, 10 and 11 may
be set as data types/formats, coordinates or colors of appro-
priate child objects of object tree 200 and then, during update
traversal (described further below), the transformed coordi-
nates may be shared with corresponding child objects in
graphics rendering tree 230.

10

15

20

25

30

35

40

45

50

55

60

65

14

Exemplary Graphics Rendering Tree Creation
Process

FIG. 12 is a flowchart of exemplary details for creating a
graphics rendering tree based on a corresponding object tree.
The exemplary process of FIG. 12 provides further details of
the graphics rendering tree creation blocks (blocks 620 and
630) of FIG. 6. The process exemplified by FIG. 12 may be
performed by either processor 125 of client 310 or processor
125 of server 320. An example bar chart 1400, shown in FIG.
14, is depicted as an example of graphics that may be rendered
by the GPU based on a graphics rendering tree created by the
exemplary process of FIG. 12.

The exemplary process may begin with obtaining an object
tree that describes a graphical scene (block 1200). The object
tree created in block 610 of FIG. 6 may, for example, be
obtained. FIG. 13 depicts one example of an object tree 1300
that may be obtained. Object tree 1300 may include multiple
objects, including a dataspace object 1305, a bar chart object
1310, a bar chart object 1320, a ruler object 1330, a quadri-
lateral object 1340, a line object 1350, a quadrilateral object
1360, a line object 1370, a line object 1380, and a text object
1390. The objects of object tree 1300 describe a graphical
scene 1400, shown in FIG. 14, which includes a plot of two
bar charts. The graphics rendering tree created by the exem-
plary process of FIG. 12 may be used by the GPU to render,
for example, graphical scene 1400.

A composite command may be created (block 1210). As
shown in FIG. 15, an update visitor 1500 may be created that
further creates a composite command 1510 into which mul-
tiple commands may be inserted for creating the eventual
graphics rendering tree. Update visitor 1500 may include a
software entity that may traverse the object tree to add one or
more commands to composite command 1510. The grouping
of commands in composite command 1510 ensures that the
graphics rendering tree has been completely created, and is
not in an intermediate state of creation, in the case where
processor 125 of client 310 or server 320 may be responding
to events external to the creation of the graphics rendering
tree.

During creation of the graphics rendering tree, processor
125 may respond to events from other sources (e.g., requests
to repaint the window from the operating system) and these
could potentially be executed between any two commands. In
between some of these commands, the graphics rendering
tree is in an intermediate state, and the window should not be
re-painted while the tree is in such a state. Grouping all of the
commands for creating the graphics rendering tree into a
single composite command ensures that requests from other
sources are executed only at times in which the graphics
rendering tree is in a valid state. Therefore, a composite
command may include all of the commands that are needed to
create the graphics rendering tree. In other implementations,
multiple composite commands may be used in place of the
single composite command. For example, one composite
command may be used for creating a first set of objects in the
graphics rendering tree and another composite command may
be used for creating a second set of objects in the graphics
rendering tree.

The objects of the object tree may be traversed and one or
more commands may be added to the composite command
for each object in the object tree (block 1220). As illustrated
in FIG. 15, update visitor 1500 may visit each of objects 1305
through 1390 of object tree 1300 and insert one or more
appropriate commands into composite command 1510 that
can be used to create the graphics rendering tree. The specific
command or commands, and the content of the specific com-

US 9,251,548 B1

15

mand or commands, for a given object of the object tree may
be selected based on library N 530-N. As shown in FIG. 15,
update visitor 1500 may visit object 1305 of object tree 1300
(visit“1” shown in FIG. 15). Based on object 1305 and library
N 530-N, update visitor 1500 may insert a “create node com-
mand” 1512 and an “insert child command” 1514 into com-
posite command 1510. The commands 1520 and 1530 may
subsequently be used to create object 1516 in the graphics
rendering tree. FIG. 15 further illustrates update visitor 1500
visiting object 1310 of object tree 1300 (visit “2” shown in
FIG. 15). Based on object 1310, update visitor 1500 may
insert another “create node command” 1518 into composite
command 1510. Update visitor 1500 may additionally insert
an “insert child command” 1520 into composite command
1510. The commands 1518 and 1520 may be subsequently
used to create object 1522 in the graphics rendering tree.

FIG. 15 additionally illustrates update visitor 1500 visiting
object 1340 of object tree 1300 (visit “3” shown in FIG. 15).
Based on object 1340, update visitor 1500 may insert another
“create node command” 1524 and “insert child command”
1526 into composite command 1510. The commands 1524
and 1526 may be subsequently used to create object 1528 in
the graphics rendering tree. FIG. 15 also illustrates update
visitor 1500 visiting object 1350 of object tree 1300 (visit “4”
shown in FIG. 15). Based on object 1350, update visitor 1500
may insert another “create node command” 1530 and “insert
child command” 1532 into composite command 1510. The
commands 1530 and 1532 may be subsequently used to cre-
ate object 1534 in the graphics rendering tree. As further
shown in FIG. 15, update visitor 1500 may visit object 1320
of object tree 1300 (visit “5” shown in FIG. 15). Based on
object 1320, update visitor 1500 may insert a “create node
command” 1536 and “insert child command” 1538 into com-
posite command 1510. The commands 1536 and 1538 may be
subsequently used to create object 1540 in the graphics ren-
dering tree.

FIG. 15 additionally illustrates update visitor 1500 visiting
object 1360 of object tree 1300 (visit “6” shown in FIG. 15).
Based on object 1360, update visitor 1500 may insert another
“create node command” 1542 and “insert child command”
1544 into composite command 1510. The commands 1542
and 1544 may subsequently be used to create object 1546 in
the graphics rendering tree. FIG. 15 also illustrates update
visitor 1500 visiting object 1370 of object tree 1300. Based on
object 1370, update visitor 1500 may insert another “create
node command” 1548 and “insert child command” 1550 into
composite command 1510. The commands 1548 and 1550
may be subsequently used to create object 1552 in the graph-
ics rendering tree.

FIG. 15 further illustrates update visitor 1500 visiting
object 1330 of object tree 1300 (visit “8” shown in FIG. 15).
Based on object 1330, update visitor 1500 may insert another
“create node command” 1554 and “insert child command”
1556 into composite command 1510. The commands 1554
and 1556 may be subsequently used to create object 1558 in
the graphics rendering tree. FIG. 15 additionally illustrates
update visitor 1500 visiting object 1380 of object tree 1300
(visit “9” shown in FIG. 15). Based on object 1380, update
visitor 1500 may insert another “create node command” 1560
and “insert child command” 1562 into composite command
1510. The commands 1560 and 1562 may be subsequently
used to create object 1564 in the graphics rendering tree. F1G.
15 also illustrates update visitor 1500 visiting object 1390 of
object tree 1300 (visit “10” shown in FIG. 15). Based on
object 1390, update visitor 1500 may insert another “create
node command” 1566 and “insert child command” 1568 into

30

40

45

50

55

16

composite command 1510. The commands 1566 and 1568
may be subsequently used to create object 1570 in the graph-
ics rendering tree.

During object tree traversal, selected object tree coordi-
nates, colors and/or data types/formats may be converted to a
different coordinate system(s), a different color space(s) and/
or to different data type(s)/format(s) (block 1230). Exem-
plary coordinate, color and/or data type/format conversion
has been described above with respect to FIGS. 9A, 9B, 10
and 11. As an example, an update method of bar chart object
1310 may call atransform method of dataspace object 1305 to
generate coordinate values for quad object 1340 and line
object 1350. As a further example, an update method of bar
chart object 1320 may call a transform method of dataspace
object 1305 to generate coordinate values for quad object
1360 and line object 1370. Ruler 1330 may use limit values
associated with dataspace object 1305 to choose placements
for the “tickmarks” on the ruler and to set coordinates asso-
ciated with line object 1380 and coordinates and text strings
associated with text object 1390. Upon complete object tree
traversal, the various constituent commands of the composite
command may be executed to create the graphics rendering
tree (block 1240).

For example, as illustrated in FIG. 16, in conjunction with
FIG. 15, each command of composite command 1510 may be
executed to create a graphics rendering object tree 1600. In
one implementation, the commands of composite command
1510 may be executed sequentially. “Create node command”
1512 and “insert child command” 1514 of FIG. 15 may be
executed to create object 1516 in graphics rendering tree 1600
(“1” in FIG. 16). “Create node command” 1518 and “insert
child command” 1520 of FIG. 15 may be executed to create
object 1522 in graphics rendering tree 1600 (“2” in FIG. 16).
“Create node command” 1524 and “insert child command”
1526 of FIG. 15 may be executed to create object 1528 in
graphics rendering tree 1600 (“3” in FIG. 16). “Create node
command” 1530 and “insert child command” 1532 of FIG. 15
may be executed to create object 1534 in graphics rendering
tree 1600 (“4” in FIG. 16). “Create node command” 1536 and
“insert child command” 1538 of FIG. 15 may be executed to
create object 1540 in graphics rendering tree 1600 (“5” in
FIG. 16). “Create node command” 1542 and “insert child
command” 1544 of FIG. 15 may be executed to create object
1546 in graphics rendering tree 1600 (“6” in FIG. 16). “Create
node command” 1548 and “insert child command” 1550 of
FIG. 15 may be executed to create object 1552 in graphics
rendering object tree 1600 (“7” in FIG. 16). “Create node
command” 1554 and “insert child command” 1556 of F1G. 15
may be executed to create object 1558 in graphics rendering
object tree 1600 (“8” in FIG. 16). “Create node command”
1560 and “insert child command” 1562 of FIG. 15 may be
executed to create object 1564 in graphics rendering object
tree 1600 (“9” in FIG. 16). “Create node command” 1566 and
“insert child command” 1568 of FIG. 15 may be executed to
create object 1570 in graphics rendering object tree 1600
(“10” in FIG. 16). FIG. 16, thus, illustrates the final graphics
rendering tree 1600 created by composite command 1510
based on object tree 1300.

Exemplary Object Tree/Graphics Rendering Tree
Update Process

FIG. 17 is a flowchart of an exemplary process for updating
a graphics rendering tree after changes or updates have been
made to the graphics rendering tree’s corresponding object
tree according to a first exemplary embodiment. The exem-

US 9,251,548 B1

17

plary process of FIG. 17 may be implemented by processor
125 of client 310 or server 320.

The exemplary process may begin when changes are made
to one or more properties of one or more objects of the object
tree (e.g., the objects of object tree 1300) (block 1700). For
example, a user that created a graphics plot for renderingon a
display device may change a parameter/property associated
with the plot. As examples, the user may change a color
associated with an aspect of the graphics plot, may change
dimensions of one or more axes of the graphics plot, or may
change labels associated with the graphics plot. The user may
change any number of properties/parameters associated with
the graphical scene to be rendered.

A “dirty” bit, associated with the object(s) in the object tree
having one or more changed properties, may be set (block
1710). The “dirty” bit may, for example, be changed from a
bit value of zero to a bit value of one (or vice-versa). For each
object having one or more properties changed in block 1700,
a “dirty” bit (e.g., a bit that indicates whether a change has
been made to a respective object) associated with that object
may be set.

FIG. 18A depicts an exemplary object tree 1300 where
each of objects 1305, 1310, 1320, 1330, 1340, 1350, 1360,
1370, 1380 and 1390 has a respective associated “dirty” bit
1805, 1810, 1820, 1830, 1840, 1850, 1860, 1870, 1880 and
1890. As shown in FIG. 18A, no changes have been made to
object tree 1300, therefore, each of “dirty” bits 1805, 1810,
1820, 1830, 1840, 1850, 1860, 1870, 1880 and 1890 has been
reset (e.g., zero). As further shown in FIG. 18B, a property
associated with object 1320 may be changed. Due to the
change in a property of object 1320, “dirty” bit 1820, associ-
ated with object 1320 may be set (e.g., changed from “0” to
“17). If the changed property(ies) is a limit property(ies), a
“dirty” bit associated with a parent dataspace or colorspace
object may be set (e.g., changed from “0” to “1”) (block
1720). For example, as shown in FIG. 18B, the change in a
limit property of object 1320 causes “dirty” bit 1805, associ-
ated with dataspace object 1305, to be set. A “limit property”
may include a property of an object that may change the outer
limits or extents of a plot, thus, possibly necessitating changes
in other objects of the object tree to permit the new plot to be
rendered. The “limit property” may also include a color prop-
erty of an object.

An update traversal of the object tree may be performed to
change one or more properties of corresponding objects in the
graphics rendering tree (block 1730). The update traversal
may include visiting each of the objects of the object tree,
determining whether its associated “dirty” bit has been set
and adding one or more commands to a composite command.
For example, a command such as a “create node” command,
which may create an object in the graphics rendering tree, or
an “insert child” command, which may associate an object as
a child of another object, may be added to the composite
command. Executing the composite command may propa-
gate changes in the object tree across to corresponding objects
in the graphics rendering tree. By using “dirty” bits to indicate
that updates or changes have been made, only commands
corresponding to modified objects may be included in the
composite command. Use of “dirty” bits, as described herein,
thus, may allow the update traversal to be performed only for
those objects whose “dirty” bit has been set. “Dirty” bits, as
described herein, therefore, permit an efficient propagation of
changes in the object tree to the graphics rendering tree. The
exemplary process of FIG. 19 below describes further details
of the update traversal of block 1730.

Exemplary Update Traversal Process

FIG. 19 is a flowchart of an exemplary process of perform-
ing the update traversal of an object tree to revise the corre-

20

40

45

65

18

sponding graphics rendering tree according to a first exem-
plary embodiment. The exemplary process of FIG. 19
describes details of block 1730 of FIG. 17. The exemplary
process of FIG. 19 may be implemented by processor 125 of
client 310 or server 320.

The exemplary process may begin with stepping through
each object of the object tree (block 1900). For example,
referring to the example object tree 1300 of FIG. 18A, object
tree 1300 may be stepped through to visit each object 1305,
1310, 1320, 1330, 1340, 1350, 1360, 1370, 1380 and 1390 of
the tree to examine the “dirty” bit associated with each object.
Object tree 1300 may, for example, be traversed by starting at
the top object in the tree and stepping downwards through
each branch in the tree in order. For example, update traversal
of'object tree 1300 may include stepping through the objects
of the tree in the following order: object 1305, object 1310,
object 1340, object 1350, object 1320, object 1360, object
1370, object 1330, object 1380 and object 1390. For each
dataspace object/colorspace object of the object tree whose
“dirty” bit has been set, the extents of the data values of the
object’s children may be determined (block 1910). The
extents of the data values of the object’s children may include
those data values that determine the size and scale of the
rendering of the graphical scene described by the object tree.
For example, a change in a'Y value of a plot in X, y and z
coordinate space may affect the size and scale of the y axis,
thus, causing a change in the three dimensional graphical
plot. Returning to FIG. 18B, this figures depicts a represen-
tative example where the Y values of the bar chart of object
1320 have been changed from Y=[2.2 1.25 2.2 3.5 2.6] to
Y=[2.21.25-13.52.6].

FIGS. 20A through 20E illustrate an example of the deter-
mination of the extents of data values associated with the
child objects of dataspace object 1305. For example, FIG.
20A illustrates the creation of a “get extents” visitor 2000 that
may subsequently visit child objects 1310, 1320 and 1330 of
dataspace object 1305. “Get extents” visitor 2000 may
include a software entity that may traverse the children of
dataspace object 1305 to determine the extents of the data
values of those children. As shown in FIG. 20A, “get extents”
visitor 2000 may first visit dataspace object 1305 before
traversing to child objects 1310, 1320 and 1330.

As further shown in FIG. 20B, “get extents” visitor 2000
may visit object 1310 to determine that the limits on the
extents of the Y values of object 1310 are 1.75 to 3.8 (i.e., the
range of Y values run from 1.75 to 3.8). As additionally shown
in FIG. 20C, “get extents” visitor 2000 may visit object 1320
to determine the limits on the extents ofthe Y values of object
1320 are -1 to 3.5. Since the upper extent of the Y values for
object 1310 was 3.8, “get extents” visitor 2000 retains that
upper extent, but changes the lower extent to —1. The Y
extents after visiting objects 1310 and 1320, thus, are Ylim=
[-13.8]. As further depicted in FIG. 20D, “get extents™ visitor
2000 may visit object 1330. The “ruler” object 1330 may
change the upper limit of the Y values to 4.0 from 3.8. Ruler
object 1330 may analyze the determined limits for the Y
values and may change the limits to improve the view of the
eventually rendered graphics (e.g., in this example, change
the upper limit of the Y values from 3.8 to 4.0). For the sake
of simplification, FIGS. 20A through 20D depict “get
extents” visitor 2000 visiting objects 1310, 1320 and 1330 to
determine the limits on only the extents of the Y wvalues.
However, “get extents” visitor 2000 may, similarly, determine
the limits on the extents of the X and Z values (or other
dimensions or properties) of the various objects of object tree
1300.

US 9,251,548 B1

19

If the extents associated with a dataspace or colorspace
object’s children have changed, then the dataspace or color-
space object’s mapping may be changed (block 1920). The
mapping may be changed to reflect the different size and scale
of the graphical scene that may be rendered based on, for
example, object tree 1300. FIG. 20E depicts “get extents”
visitor 2000 visiting dataspace object 1305 to change the
object’s mapping (e.g., from mapping=F to mapping=G).

An update method may be executed for each object of the
object tree whose “dirty” bit has been set to insert appropriate
commands into a composite command (block 1930). As each
object of the object tree is traversed, one or more appropriate
commands may be inserted into the composite command for
revising that object’s counterpart object in the graphics ren-
dering tree. Execution of an update method for a given object
of'object tree (e.g., object tree 100 or object tree 1300) whose
“dirty” bit has been set may also set the properties of child
objects that are below that given object in the object tree, thus,
causing the “dirty” bits associated with those child objects to
be set.

Data values associated with children of the dataspace/col-
orspace object may be transformed based on the dataspace/
colorspace object’s changed mapping (block 1940). This
transformation may include converting coordinates, colors
and/or data types/formats to a different coordinate system(s),
a different color space(s) and/or different data type(s)/
format(s) for association with the graphics rendering tree, as
already described above.

The implementation of blocks 1930 and 1940 may occur
differently in different embodiments based on whether the
dataspace/colorspace object’s (e.g., dataspace object 1305 in
FIG. 13) mapping can be represented as a linear or non-linear
combination of its inputs. In the linear case, the dataspace/
colorspace’s mapping can be implemented using a transfor-
mation matrix in the graphics rendering tree. In this imple-
mentation, the transformation can be implemented in GPU
130 and the coordinate and/or color values do not have to be
changed whenever the dataspace/colorspace’s mapping
changes. In the non-linear case (e.g., logarithmic plots or
polar coordinates), the dataspace/colorspace object’s trans-
form method may convert the coordinate and/or color values
when the dataspace/colorspace object’s mapping changes.
FIGS. 21-25 below depict an example of the linear case and
FIGS. 26 and 27 depict the non-linear case.

In the linear case depicted starting with FIG. 21, update
visitor 1500 may visit dataspace object 1305 and an executed
update method associated with object 1305 may insert com-
mands 2125, 2130 and 2135 into a composite command 2110
which, when executed in block 1950, may create a peer object
2120 in the graphics rendering tree. After inserting the com-
mands into composite command 2110, update visitor 1500
may reset dirty bit 1805 to zero. Update visitor 1500 may then
step through the objects of object tree 1300 until the next dirty
bit marked as “dirty” (e.g., set to 1) is located. In the example,
update visitor 1500 steps through the objects of object tree
1300 until set dirty bit 1820 associated with object 1320 is
located. As shown in FIG. 22, an executed update method
associated with object 1320 may insert commands 2205,
2210 and 2215 into composite command 2110 which, when
executed in block 1950, may create a peer object 2200 in the
graphics rendering tree. The executed update method associ-
ated with object 1320 may further pass object’s 1320 coordi-
nate values to dataspace object 1305 to generate coordinates
and then uses those coordinates to set coordinate properties
onobjects 1360 and 1370. Update visitor 1500 may then mark
dirty bit 1820 as “clean” (e.g., reset to zero), may mark dirty
bits 1860 and 1870 as “dirty” (e.g., set to one) and then may

5

10

15

20

25

30

35

40

45

50

55

60

20

continue on to child object 1360. As further shown in FIG. 23,
an executed update method associated with object 1360 may
insert commands 2305, 2310 and 2315 into composite com-
mand 2110 which, when executed in block 1950, may create
peer object 2300. The executed update method associated
with object 1360 may further pass object 1360’s coordinate
properties to peer object 2300. Update visitor 1500 may then
mark dirty bit 1860 as “clean” (e.g., reset to zero) and con-
tinue on to child object 1370.

As shown in FIG. 24, an executed update method associ-
ated with object 1370 may insert commands 2405, 2410 and
2415 into composite command 2110 which, when executed in
block 1950, may create peer object 2400. The executed
update method associated with object 1370 may further pass
object 1370°s coordinate properties to peer object 2400.
Update visitor 1500 may then mark dirty bit 1870 as “clean”
(e.g., reset to zero) and continue on to “ruler” object 1330. If
dataspace object 1305°s limits have changed, then update
visitor 1500 may treat object 1330 as if its dirty bit 1830 has
been marked as “dirty” (e.g., set to one). As a result, shown in
FIG. 25, an executed update method associated with object
1330 may insert commands 2505, 2510 and 2515 into com-
posite command 2110 which, when executed in block 1950,
may create peer object 2500 in the graphics rendering tree.
The executed update method associated with object 1330 may
further generate new coordinates and text strings for peer
object 2500.

The linear case may be completed with update visitor 1500
further visiting each of objects 1380 and 1390, causing cor-
responding update methods to be executed (not shown) in a
similar fashion to that described with respect to objects 1360
and 1370.

In the non-linear case (i.e., the dataspace object’s mapping
can’t be represented as a linear combination of its inputs)
depicted starting with FIG. 26, update visitor 1500 may visit
dataspace object 1305 and an executed update method asso-
ciated with object 1305 may insert commands 2605, 2610 and
2615 into composite command 2110 which, when executed in
block 1950, may create a peer object 2600 in the graphics
rendering tree. After inserting the commands into composite
command 2110, update visitor 1500 may reset dirty bit 1805
to zero. Update visitor 1500 may then step through the objects
of object tree 1300. However, unlike in the linear case
described above with respect to FIGS. 21-25, an update
method is additionally executed for object 1310 when visited
by update visitor 1500. As shown in FIG. 27, the executed
update method associated with object 1310 may insert com-
mands 2705, 2710 and 2715 into composite command 2110
which, when executed in block 1950, may create a peer object
2700 in the graphics rendering tree. The executed update
method associated with object 1310 may further pass object
1310’s coordinate values to dataspace object 1305 to generate
coordinates and then uses those coordinates to set coordinate
properties on objects 1340 and 1350. Update visitor 1500
may mark dirty bits 1840 and 1850 as “dirty” (e.g., set to one)
and then may continue on to child object 1340. As further
shown in FI1G. 28, an executed update method associated with
object 1340 may insert commands 2805, 2810 and 2815 into
composite command 2110 which, when executed in block
1950, may create peer object 2800. The executed update
method associated with object 1340 may further pass object
1340’s coordinate properties to peer object 2800. Update
visitor 1500 may then mark dirty bit 1840 as “clean” (e.g.,
reset to zero) and continue on to child object 1350.

As further shown in FIG. 29, an executed update method
associated with object 1350 may insert commands 2905,
2910 and 2915 into composite command 2110 which, when

US 9,251,548 B1

21

executed in block 1950, may create peer object 2900. The
executed update method associated with object 1350 may
further pass object 1350°s coordinate properties to peer object
2900. Update visitor 1500 may then mark dirty bit 1850 as
“clean” (e.g., reset to zero). The visitation of the remaining
objects in object tree 1300 by update visitor 1500 may con-
tinue in a similar fashion as described above with respect to
FIGS. 22-25.

Once each object in the object tree has been traversed, the
composite command may be executed to revise the appropri-
ate object(s) of the graphics rendering tree (block 1950). For
each object in the object tree that has had at least one property
changed, the composite command, which may include one or
more commands related to each object in the graphics ren-
dering tree, may be executed to revise the counterpart objects
in the graphics rendering tree. After being revised, the graph-
ics rendering tree, when used by the GPU, may be rendered as
bar chart 3000, shown in FIG. 30.

The exemplary processes of FIGS. 17 and 19 have been
described with respect to examples that include an update
traversal associated with a dataspace object. However, the
example may be equally valid if dataspace object 1305 is
instead a colorspace object. In such an example, the Y prop-
erties associated with object 1320 may instead be color prop-
erties, such as, for example, a color array containing red,
green, blue and alpha (where alpha is a measure of transpar-
ency). In one example, the red, green, blue and alpha values of
the color array may change from [0; 0; 0; 255] to [0; 255; 0;
127].

Exemplary Object Tree/Graphics Rendering Tree
Update Process

FIG. 31 is a flowchart of an exemplary process forupdating
a graphics rendering tree after changes or updates have been
made to the graphics rendering tree’s corresponding object
tree according to a second exemplary embodiment. The
exemplary process of FIG. 31 may be implemented by pro-
cessor 125 of client 310 or server 320. The exemplary
embodiments of FIG. 31, and FIG. 33 below, may be alterna-
tive embodiments to the exemplary embodiments of FIGS. 17
and 19 described above. In the exemplary embodiments of
FIGS. 31 and 33, as opposed to the embodiments described
with respect to FIGS. 17 and 19, the extents of the children of
the dataspace/colorspace objects may be determined prior to
the update traversal.

The exemplary process may begin when changes are made
to one or more properties of one or more objects of the object
tree (e.g., the objects of object tree 1300) (block 3100). For
example, a user that created a graphics plot for renderingon a
display device may change a parameter/property associated
with the plot. As examples, the user may change a color
associated with an aspect of the graphics plot, may change
dimensions of one or more axes of the graphics plot, or may
change labels associated with the graphics plot. The user may
change any number of properties/parameters associated with
the graphical scene to be rendered.

A “dirty” bit, associated with the object(s) in the object tree
having one or more changed properties, may be set (block
3110). The “dirty” bit may, for example, be changed from a
bit value of zero to a bit value of one (or vice-versa). For each
object having one or more properties changed in block 3100,
a “dirty” bit (e.g., a bit that indicates whether a change has
been made to a respective object) associated with that object
may be set. Referring back to FIG. 18A, this figure, as previ-
ously described, depicts an exemplary object tree 1300 where
each of objects 1305, 1310, 1320, 1330, 1340, 1350, 1360,

10

15

20

25

30

35

40

45

50

55

60

65

22

1370, 1380 and 1390 has a respective associated “dirty” bit
1805, 1810, 1820, 1830, 1840, 1850, 1860, 1870, 1880 and
1890. As shown in FIG. 18A, no changes have been made to
object tree 1300, therefore, each of “dirty” bits 1805, 1810,
1820,1830,1840, 1850, 1860, 1870, 1880 and 1890 has been
reset (e.g., zero). As further shown in FIG. 18B, a property
associated with object 1320 may be changed. Due to the
change in a property of object 1320, “dirty” bit 1820, associ-
ated with object 1320 may be set (e.g., changed from “0” to
“17).

If the changed property(ies) is a limit property(ies), a
“dirty” bit associated with a parent dataspace or colorspace
object may be set (e.g., changed from “0” to “1”) (block
3120). For example, as shown in FIG. 18B, the change in a
limit property of object 1320 causes “dirty” bit 1805, associ-
ated with dataspace object 1305, to be set. A “limit property”
may include a property of an object that may change the outer
limits or extents of a plot, thus, possibly necessitating changes
in other objects of the object tree to permit the new plot to be
rendered. The “limit property” may also include a color prop-
erty of an object.

The objects of the object tree may be stepped through to
determine the extents of the data values of each dataspace/
colorspace object’s children (block 3130). The extents of the
data values of the object’s children may include those data
values that determine the size and scale of the rendering of the
graphical scene described by the object tree. For example, a
change inaY value of a plotinx, y and z coordinate space may
affect the size and scale of the y axis, thus, causing a change
in the three dimensional graphical plot. As a specific example,
the Y values of the bar chart of object 1320, shown in FIG.
32A, may have been changed fromY=[2.21.252.23.52.6]to
Y=[2.21.25-13.52.6].

FIGS. 32A through 32C illustrate an example of the deter-
mination of the extents of data values associated with the
child objects of dataspace object 1305. For example, FIG.
32A illustrates the creation of a “get extents” visitor 3200 that
may subsequently visit child objects 1310 and 1320 of
dataspace object 1305. “Get extents” visitor 3200 may
include a software entity that may traverse the children of
dataspace object 1305 to determine the extents of the data
values of those children. As shown in FIG. 32 A, “get extents”
visitor 3200 may first visit dataspace object 1305 before
traversing to child objects 1310 and 1320.

As further shown in FIG. 32B, “get extents” visitor 3200
may visit object 1310 to determine that the limits on the
extents of the Y values of object 1310 are 1.75 to 3.8 (i.e., the
range of Y values run from 1.75 to 3.8). As additionally shown
in FIG. 32C, “get extents” visitor 3200 may visit object 1320
to determine the limits on the extents ofthe Y values of object
1320 are -1 to 3.5. Since the upper extent of the Y values for
object 1310 was 3.8, “get extents” visitor 3200 retains that
upper extent, but changes the lower extent to —1. The Y
extents after visiting objects 1310 and 1320, thus, are Ylim=
[-1 3.8]. For the sake of simplification, FIGS. 32A through
32C depict “get extents” visitor 3200 visiting objects 1310
and 1320 to determine the limits on only the extents of the Y
values. However, “get extents” visitor 3200 may, similarly,
determine the limits on the extents of the X and Z values (or
other dimensions or properties) of the various objects of
object tree 1300.

An update traversal of the object tree may be performed to
change one or more properties of corresponding objects in the
graphics rendering tree (block 3130). The update traversal
may include visiting each of the objects of the object tree,
determining whether its associated “dirty” bit has been set
and adding one or more commands to a composite command.

US 9,251,548 B1

23

For example, a command such as a “create node” command,
which may create an object in the graphics rendering tree, or
an “insert child” command, which may associate an object as
a child of another object, may be added to the composite
command. Executing the composite command may propa-
gate changes in the object tree across to corresponding objects
in the graphics rendering tree. By using “dirty” bits to indicate
that updates or changes have been made, only commands
corresponding to modified objects may be included in the
composite command. Use of “dirty” bits, as described herein,
thus, may allow the update traversal to be performed only for
those objects whose “dirty” bit has been set. “Dirty” bits, as
described herein, therefore, permit an efficient propagation of
changes in the object tree to the graphics rendering tree. The
exemplary process of FIG. 33 below describes further details
of the update traversal of block 3140.

Exemplary Update Traversal Process

FIG. 33 is a flowchart of an exemplary process of perform-
ing the update traversal of an object tree to revise the corre-
sponding graphics rendering tree according to a second exem-
plary embodiment. The exemplary process of FIG. 33
describes details of block 3140 of FIG. 31. The exemplary
process of FIG. 33 may be implemented by processor 125 of
client 310 or server 320.

The exemplary process may begin with stepping through
each object of the object tree (block 3300). For example,
referring to the example object tree 1300 of FIG. 18A, object
tree 1300 may be stepped through to visit each object of the
tree to examine the “dirty” bit associated with each object.
Object tree 1300 may, for example, be traversed by starting at
the top object in the tree and stepping downwards through
each branch in the tree in order. For example, update traversal
of object tree 1300 may include stepping through the objects
of the tree in the following order: object 1305, object 1310,
object 1340, object 1350, object 1320, object 1360, object
1370, object 1330, object 1380 and object 1390.

For each dataspace/colorspace object, a determination may
be made whether the previously determined extents of the
object’s children should be modified (block 3310). To make
this determination, the dataspace/colorspace object may pass
the previously determined extents to, for example, a ruler
object and the ruler object may determine if the limits of the
extents need to be modified to improve the view of the view of
the eventually rendered graphics. As one example, as shown
in FIG. 34A, upon being visited by update visitor 1500,
dataspace object 1305 may pass the previously determined Y
extents of Ylim=[-1 3.8] to ruler object 1330. Ruler object
1330 may change the upper limit of the Y values to 4.0 from
3.8 and pass the next Y extents Ylim=[-1 4.0] back to
dataspace object 1305.

Each dataspace/colorspace object’s mapping may then be
changed based on the previously determined and/or modified
extents of the object’s children (block 3320). In the example
of FIG. 34A, since dataspace object 1305°s Y extents have
been modified by ruler object 1330, the mapping of dataspace
object 1305 may be changed (i.e., the final extents may be
used to define a new transform associated with dataspace
object 1305). For example, as shown in FIG. 34B, dataspace
object 1305’s mapping may be changed from “F” (FI1G. 34A)
to “G”.

An update method may be executed for each object of the
object tree whose “dirty” bit has been set to insert appropriate
commands into a composite command (block 1930). As each
object of the object tree is traversed, one or more appropriate
commands may be inserted into the composite command for

25

35

40

45

50

24

revising that object’s counterpart object in the graphics ren-
dering tree. Execution of an update method for a given object
of'object tree (e.g., object tree 100 or object tree 1300) whose
“dirty” bit has been set may also set the properties of child
objects that are below that given object in the object tree, thus,
causing the “dirty” bits associated with those child objects to
be set.

Data values associated with children of the dataspace/col-
orspace object may be transformed based on the dataspace/
colorspace object’s changed mapping (block 1940). This
transformation may include converting coordinates, colors
and/or data types/formats to a different coordinate system(s),
a different color space(s) and/or different data type(s)/
format(s) for association with the graphics rendering tree, as
already described above.

The implementation of blocks 3330 and 3340 may occur
differently in different embodiments based on whether the
dataspace/colorspace object’s (e.g., dataspace object 1305)
mapping can be represented as a linear or non-linear combi-
nation of its inputs. In the linear case, the dataspace/color-
space’s mapping can be implemented using a transformation
matrix in the graphics rendering tree. In this implementation,
the transformation can be implemented in GPU 130 and the
coordinate and/or color values do not have to be changed
whenever the dataspace/colorspace’s mapping changes. In
the non-linear case (e.g., logarithmic plots or polar coordi-
nates), the dataspace/colorspace object’s transform method
may convert the coordinate and/or color values when the
dataspace/colorspace object’s mapping changes. FIGS.
21-25, already described above, depict examples of the linear
case and FIGS. 26 and 27 depict the non-linear case (see
above for the descriptions of the examples of FIGS. 21-27).

Once each object in the object tree has been traversed, the
composite command may be executed to revise the appropri-
ate object(s) of the graphics rendering tree (block 3350). For
each object in the object tree that has had at least one property
changed, the composite command, which may include one or
more commands related to each object in the graphics ren-
dering tree, may be executed to revise the counterpart objects
in the graphics rendering tree. After being revised, the graph-
ics rendering tree, when used by the GPU, may be rendered as
bar chart 3000, as shown in FIG. 30.

The exemplary processes of FIGS. 31 and 33 have been
described with respect to examples that include an update
traversal associated with a dataspace object. However, the
example may be equally valid if dataspace object 1305 is
instead a colorspace object. In such an example, the Y prop-
erties associated with object 1320 may instead be color prop-
erties, such as, for example, a color array containing red,
green, blue and alpha (where alpha is a measure of transpar-
ency). In one example, the red, green, blue and alpha values of
the color array may change from [0; 0; 0; 255] to [0; 255; 0;
127].

Exemplary Graphics Rendering Process

FIG. 35 is a flowchart of an exemplary process for render-
ing graphics based on a previously created graphics rendering
tree. Block 3500 of FIG. 35 may be implemented by special-
ized processing unit 130 (e.g., a GPU) ofa client 310 or server
320, and blocks 3510 and 3520 of FIG. 35 may be imple-
mented by processor 125 of client 310 or server 320.

The exemplary process may begin with the GPU rendering
the graphics using the previously created, or revised, graphics
rendering tree (block 3500). For example, as shown in FIG.
36, the GPU may render a plot 3600 based on a graphics
rendering tree. In some implementations, plot 3600 may be

US 9,251,548 B1

25

displayed by browser 315, as shown in FIG. 37. Plot 3600 is
shown for purposes of illustration. Many different plots may
be rendered by the GPU based on the graphics rendering tree.
Prior to the GPU rendering the graphics using the previously
created, or revised, graphics rendering tree, the contents of
the graphics rendering tree may be re-ordered so that state
changes can be minimized. For example, state attribute sort-
ing may be used to re-order the contents of the graphics
rendering tree prior to the GPU rendering the graphics.
Because the GPU typically is deeply “pipelined,” the speed of
the graphics rendering may be significantly slowed when
there are many changes in state. Therefore, improvements in
performance (e.g., graphics rendering speed) may be
obtained by rendering objects that have the same state
together. For example, if a graphics scene uses many objects
that have a same state (e.g., a same texture map), better
performance may be obtained from the GPU if all of these
objects are rendered together instead of switching between
these and other objects.

User interaction with the rendered graphics may be subse-
quently received (block 3610). For example, the user may
select a different view of the plot 3600. As another example,
“mouse” motion events (i.e., movement of the mouse by the
user) may change view parameters of a graphical scene.
Objects of the object tree may be used to perform scripted
actions based on the user interaction (block 3520). For
example, in response to the above-described “mouse” motion
events, the graphical scene may be redrawn and updated view
parameters may be sent back to an object in the object tree.

CONCLUSION

Implementations described herein provide illustration and
description, but are not intended to be exhaustive or to limit
the invention to the precise form disclosed. Modifications and
variations are possible in light of the above teachings, or may
be acquired from practice of the invention. For example,
while a series of blocks have been described with regard to
FIGS. 6,12,17,19, 31 and 33, the order of the blocks may be
modified in other implementations. Further, non-dependent
blocks may be performed in parallel. Some implementations
have been described herein with respect to a graphics render-
ing tree being organized and optimized for use by a GPU.
However, it will be appreciated that the embodiments
described herein may be equivalently applied to peer object
trees organized and optimized for use with other specialized
processing units, such as, for example, PPUs or DSPs. Addi-
tionally, implementations have been described herein with
respect to a general purpose CPU and a specialized process-
ing unit. In other implementations, a first object tree may be
associated with a first type of CPU and a second object tree
may be associated with a second type of CPU, where the
second type of CPU may be faster and/or have additional
capabilities as compared to the first type of CPU. Further-
more, in other implementations, the first object tree and the
second object tree may be associated with a single CPU,
where the single CPU may utilize both of the first and second
object trees. Update traversal has been described herein as
setting “dirty” bits associated with each object whose prop-
erties have been changed, and then visiting each object in the
object tree, checking each object’s “dirty” bit to determine if
the object’s properties have been changed, and adding one or
more commands to the composite command for each object
whose “dirty” bit has been set. However, in other implemen-
tations, only a subset of objects of the set of objects that have
had their properties changed may have their associated
“dirty” bits set. Additionally, in other implementations, a

10

15

20

25

30

35

40

45

50

55

60

65

26

subset of objects of the set of objects whose “dirty” bit has
been set may only be visited during update traversal (i.e., not
all of the objects whose “dirty” bit has been set are visited).

Logic for practicing object data conversion/transforma-
tion, and other aspects described herein, may be provided to
a client via a license. This license may, in some implementa-
tions, be tiered so that users have varying degrees of flexibility
and/or speed based on the licenses that they have purchased or
otherwise acquired.

It will be apparent that aspects described herein may be
implemented in many different forms of software, firmware,
and hardware in the implementations illustrated in the figures.
The actual software code or specialized control hardware
used to implement these aspects is not limiting of the inven-
tion. Thus, the operation and behavior of the aspects have
been described without reference to the specific software
code, it being understood that software and control hardware
could be designed to implement the aspects based on the
description herein.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the invention. In
fact, many of these features may be combined in ways not
specifically recited in the claims and/or disclosed in the speci-
fication.

No element, act, block or instruction used in the present
application should be construed as critical or essential to the
invention unless explicitly described as such. Also, as used
herein, the article “a” is intended to include one or more
items. Where only one item is intended, the term “one” or
similar language is used. Further, the phrase “based on” is
intended to mean “based, at least in part, on” unless explicitly
stated otherwise.

What is claimed is:

1. A non-transitory computer-readable medium storing
instructions, the instructions comprising:

one or more instructions, executable by at least one pro-

cessor, to cause the at least one processor to:

store a first set of objects in a first data structure,
the first set of objects describing a graphical scene;

create a group of commands;

add a command for at least one object, of the first set of
objects, to the group of commands;

combine the group of commands into a composite com-
mand,
the group of commands including the added com-

mand;

create a second set of objects in a second data structure
based on the first set of objects in the first data struc-
ture and the composite command;

modify the second set of objects; and

provide the modified second set of objects to a browser
for rendering the graphical scene.

2. The computer-readable medium of claim 1, where the
one or more instructions include:

one or more instructions to associate a flag with each object

of the first set of objects; and

one or more instructions to set the flag associated with each

object of the first set of objects to indicate each of the
objects in the first set of objects that have been changed.

3. The computer-readable medium of claim 1, where the
one or more instructions include:

one or more instructions to add a command for each object

of the first set of objects to the group of commands.

4. The computer-readable medium of claim 1, where a type
of command for the at least one object, of the first set of
objects, is selected using a library.

US 9,251,548 B1

27

5. The computer-readable medium of claim 1, where the

one or more instructions include:

one or more instructions to convert data associated with the
second set of objects from a first format to a second
format.
6. The computer-readable medium of claim 1, where
the first set of objects is created at a client,
the second set of objects is created at a server that is remote
from the client, and
the browser is to render the graphical scene at the client.
7. The computer-readable medium of claim 1, where
the first set of objects and second set of objects are created
at a server, and
the browser is to render the graphical scene at a client that
is remote from the server.
8. A system comprising:
a memory including instructions;
a processor to execute the instructions to:
store a first set of objects in a first data structure,
the first set of objects describing a graphical scene;
create a group of commands;
add a command for at least one object, of the first set of
objects, to the group of commands;
combine the group of commands into a composite com-
mand,
the group of commands including the added com-
mand;
create a second set of objects in a second data structure
based on the first set of objects in the first data struc-
ture and the composite command;
modify the second set of objects; and
provide the modified second set of objects to a browser
for rendering the graphical scene.
9. The system of claim 8, where the processor is further to:
associate a flag with each object of the first set of objects;
and
set the flag associated with each object of the first set of
objects to indicate each of the objects in the first set of
objects that have been changed.
10. The system of claim 8, where the processor is further to:
add a command for each object of the first set of objects to
the group of commands.
11. The system of claim 8, where a type of command for the
at least one object, of the first set of objects, is selected using

a library.

12. The system of claim 8, where the processor is further to:

convert data associated with the second set of objects from
a first format to a second format.

13. The system of claim 8, where

the first set of objects is created at a client,

the second set of objects is created at a server that is remote
from the client, and

the browser is to render the graphical scene at the client.

14. The system of claim 8, where

the first set of objects and second set of objects are created
at a server, and

10

15

20

25

30

35

40

45

50

55

28

the browser is to render the graphical scene at a client that
is remote from the server.
15. A method comprising:
storing a first set of objects in a first data structure,
the first set of objects describing a graphical scene,
the storing the first set of objects being performed by a
computing device;
creating a group of commands,
the creating the group of commands being performed by
the computing device;
adding a command for at least one object, of the first set of
objects, to the group of commands,
the adding the command being performed by the com-
puting device;
combining the group of commands into a composite com-
mand,
the group of commands including the added command,
and
the combining the group of commands being performed
by the computing device;
creating a second set of objects in a second data structure
based on the first set of objects in the first data structure
and the composite command,
the creating the second set of objects being performed by
the computing device;
modifying the second set of objects,
the modifying the second set of objects being performed
by the computing device; and
providing the modified second set of objects to a browser
for rendering the graphical scene,
the providing the second set of objects being performed
by the computing device.
16. The method of claim 15, further comprising:
associating a flag with each object of the first set of objects;
and
setting the flag associated with each object of the first set of
objects to indicate each of the objects in the first set of
objects that have been changed.
17. The method of claim 15, further comprising:
adding a command for each object of the first set of objects
to the group of commands.
18. The method of claim 15, further comprising:
converting data associated with the second set of objects
from a first format to a second format.
19. The method of claim 15, where
the first set of objects is created at a client,
the second set of objects is created at a server that is remote
from the client, and
the browser is to render the graphical scene at the client.
20. The method of claim 15, where
the first set of objects and second set of objects are created
at a server, and
the browser is to render the graphical scene at a client that
is remote from the server.

#* #* #* #* #*

